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Animals share a variety of common resources, which can be a major driver of

conspecific encounter rates. In this work, we implement a spatially explicit

mathematical model for resource visitation behaviour in order to examine

how changes in resource availability can influence the rate of encounters

among consumers. Using simulations and asymptotic analysis, we demon-

strate that, under a reasonable set of assumptions, the relationship between

resource availability and consumer conspecific encounters is not monotonic.

We characterize how the maximum encounter rate and associated critical

resource density depend on system parameters like consumer density and

the maximum distance from which consumers can detect and respond to

resources. The assumptions underlying our theoretical model and analysis

are motivated by observations of large aggregations of black-backed jackals

at carcasses generated by seasonal outbreaks of anthrax among herbivores in

Etosha National Park, Namibia. As non-obligate scavengers, black-backed

jackals use carcasses as a supplemental food resource when they are available.

While jackals do not appear to acquire disease from ingesting anthrax car-

casses, changes in their movement patterns in response to changes in carcass

abundance do alter jackals’ conspecific encounter rate in ways that may

affect the transmission dynamics of other diseases, such as rabies. Our theor-

etical results provide a method to quantify and analyse the hypothesis that the

outbreak of a fatal disease among herbivores can potentially facilitate out-

breaks of an entirely different disease among jackals. By analysing carcass

visitation data, we find support for our model’s prediction that the number

of conspecific encounters at resource sites decreases with additional increases

in resource availability. Whether or not this site-dependent effect translates to

an overall decrease in encounters depends, unexpectedly, on the relationship

between the maximum distance of detection and the resource density.
1. Introduction
The spatio-temporal distribution of resources plays a key role in animal ecology.

Studies have examined the impact of naturally occurring resource fluctuations on

consumer population dynamics, behaviour and community structure [1–6].

A smaller body of work (reviewed by Becker et al. [7] and Sorensen et al. [8])

specifically considers the effects that resource provisioning can have for infectious

diseases of consumers. Separately, other research has focused on the relationships
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Figure 1. Empirical jackal and carcass location data from Etosha National Park (ENP). (a) GPS locations for one collared jackal over one-week time frames, beginning
on 2 February 2010 during an anthrax outbreak (i) and 6 June 2009 during the dry season (ii). (b) GPS locations for all collared jackals on 2 February 2010. Jackals
are differentiated by colour. Each coloured line segment with black dashes connects two GPS fixes for that jackal. Blue circles represent waterholes. Blue triangles
indicate locations of known carcasses. White triangle insets indicate that the carcass tested positive for anthrax causing bacteria. Roads are indicated by black lines
and the shaded grey areas are part of a salt pan in ENP.
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between resource distribution and animal movement [9–11],

and between animal movement and infectious disease

[12–16]. However, less attention has been given to the relation-

ship between resource availability and conspecific encounter

rates among consumers, despite the clear potential for resource

dynamics to indirectly mediate infectious disease transmission

via an influence on contact patterns (although see [17,18]).

With this as motivation, we investigate the role resources play

in helping to maintain pathogen transmission or facilitate disease

emergence. Specifically, we develop a mathematical model for

sensing and decision-making by territorial animals that respond

to temporarily available, randomly located resources. Through

simulations and asymptotic analysis, we characterize the

model’s major qualitative properties, focusing on the relation-

ship between resource density and consumer encounter rates.

To place these results in the context of disease ecology, we then

consider the implications of our findings for the ecological

system that inspired this work. Namely, we study the potential

for a relationship between rabies virus maintenance among a

population of black-backed jackals (Canis mesomelas) and the

annual occurrence of anthrax outbreaks among ungulates in

Etosha National Park (ENP) in Namibia [19–21].

Carcasses that result from seasonal anthrax outbreaks con-

stitute an important supplemental food resource for the jackals.

From 2 years worth of jackal and carcass location data [22], we

have an improved understanding of how the jackals respond to

changes in resource availability. The changes in movement pat-

terns are compelling when considered in the context of the

jackal population structure and sociality. Jackals live in territor-

ial family groups consisting of a mated pair, up to five pups,

and on occasion a few juveniles [21]. Adults and juveniles

regularly hunt and forage (usually alone or in pairs) within

and nearby their defendable territory, and opportunistically

scavenge on carcasses when they are available. In Zimbabwe,

jackals have been directly observed violating territory bound-

aries in order to feed on carrion; these incursions result
in varying degrees of altercation between resident and

non-resident jackals [23]. In the location data from Etosha, we

observe that jackals sometimes made long treks to visit

resources (figure 1; electronic supplementary material, video

S1), suggesting that they cross through the territories of neigh-

bouring family groups. Moreover, motion-sensor camera trap

recordings at carcass sites captured moments when upwards

of 20 jackals convened at a single location at the same time

(electronic supplementary material, video S2).

During times of unusually high or low resource avail-

ability, jackals may have increased contact with individuals

outside their family group [23]. As a consequence, though

anthrax bacteria rarely cause disease in carnivores [24–26],

an intense uptick in jackal-to-jackal encounters at carcass

sites during an anthrax outbreak could lead to an outbreak of

a different disease in the jackal population [21]. This is an inter-

esting indirect effect: changes in resource availability do not

alter the assemblage of attacking pathogens, rather they

change the host population’s contact frequency in a way that

facilitates (or hinders) invasion. While our application is

focused on rabies virus, the qualitative results we present

also apply to other directly transmitted pathogens such as

canine distemper virus or more generally to any pathogen

that can be spread through interactions at shared resource sites.
2. Model development, data collection and
statistical methods

Before developing our models for resource-driven encounters

and pathogen invasion, we first provide additional context

based on trophic and disease dynamics in our consumer–

resource system. As non-obligate scavengers, jackals in Etosha

benefit when carcasses are available, but are not threatened

with starvation when carcasses are unavailable. Jackals also reg-

ularly hunt and forage for sustenance [27]. ENP contains dry

http://rsif.royalsocietypublishing.org/
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Figure 2. Simulated consumer – resource landscapes with resource intensity k. Voronoi diagrams displaying the regions of ‘attraction’ for each resource. Each blue
triangle indicates the location of a resource. The black square and the white squares indicate the locations of the focal consumer and non-focal consumers, respect-
ively. In each panel, there is a grey circle centred at the resource closest to the focal consumer, with a radius representing the detection distance ‘. The consumers
within each circle are close enough to detect the resource closest to the focal consumer. (a – c) The number of resources displayed in each panel is 2, 5 and 50.
(Online version in colour.)
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savannah habitat, in which migratory herds of zebra, springbok

and wildebeest experience seasonal anthrax outbreaks (causal

bacterial agent Bacillus anthracis) that seem to play a natural regu-

latory role on their population dynamics. These outbreaks occur

during the end of the wet season (March–April) [19,20], with the

majority of observed cases occurring in plains zebra (Equus
quagga; figure 4, inset). Bacillus anthracis is a sporulating environ-

mentally transmitted pathogen, with herbivores likely acquiring

infection when ingesting contaminated soil or plant material

around the site of an old carcass [28]. The mammalian scavenger

community that consumes carrion generated by these outbreaks

includes lions, hyenas and jackals. These scavengers consume B.
anthracis-laden carrion without observed disease in ENP [19,21].

While anthrax does not generally cause disease directly in carni-

vores, it is possible that directly transmitted pathogens, such as

rabies virus, may be transmitted between consumers that share

a carcass.

Rabies is a highly fatal disease caused by the rabies virus

with maintenance populations generally in bat, domestic dog

or wild carnivore populations. Rabid carnivores are extremely

aggressive and transmit rabies by biting other animals

throughout their 5–7 day-long infectious period [23,29],

before they eventually die from the disease. Previous work

[29–31] has found mixed results concerning whether or not

jackals are capable of maintaining rabies transmission without

repeated introductions from other host species. Environmental

conditions may play a role in determining whether rabies

maintenance is possible in jackal populations. In what follows,

we expand on this work by informing our pathogen invasion

model with results from our mechanistic model for encounter

rates at resource sites.

2.1. Mathematical model for resource-driven encounters
With the jackal population from ENP in mind, we develop

our resource-driven encounters model by first introducing

the following general assumptions:

— the locations of both consumers and resources are ran-

domly distributed throughout a spatial region of interest;

— the resources are only available for a given interval of time

t1 and new resources are located independently of

previous ones;

— consumers are territorial, spending most of their time near

a home location and have a limited range of detection,

characterized by a length scale ‘;

— consumers prefer to visit the nearest resource they detect;
— they respond to resources independently of other consu-

mers, and

— they are satiated after visiting a resource, and therefore

visit at most one resource per unit of time t2.
We are interested in the number of conspecific encounters a

typical consumer will have as a result of temporarily available

resources. Thus, the resources we consider are supplemental in

the sense that alternative resources are available and consumer

survival does not depend exclusively on the supplemental

resource availability.

For the sake of simplicity, and because we believed the

choice was reasonable for the jackal population in ENP, we

choose the time parameters to be the same, t1 ¼ t2 ¼ t ¼ one

week. We use O to denote the spatial region we are studying.

We reset the supplemental resource landscape each week

according to a Poisson spatial process, with intensity par-

ameter k. This means that for any region of area A contained

in O, the number of resources in that region is Poisson distrib-

uted with mean kA. Moreover, if two regions are disjoint, their

respective numbers of resources are independent. We assume

there is a consumer located at the origin, referred to as

the focal consumer. The remaining consumers are distributed

throughout O according to a Poisson spatial point process

with intensity r. These intensity parameters correspond to

the expected population density produced by the model for

the consumers and resources, respectively. In our simulation

and mathematical analysis, the size of the landscape is taken

to be sufficiently large so that the presence of a boundary

does not have an effect on quantities of interest.

To model the consumer’s limited ability to detect resources

and/or travel to resources that have been detected, we assume

there is a maximum distance ‘within which a given consumer

will detect resources. Moreover, we assume that consumers

will detect all resources within a surrounding circle of radius

‘ and will choose to visit the nearest of these detected resources.

To understand the consumer–resource landscape, it is helpful

to construct Voronoi tessellations of the region O generated

using the set of resource locations [32]. Using the R-package

deldir [33], we display three such tessellations in figure 2.

Each subregion of the tessellation, referred to as a Voronoi
cell, contains exactly one resource and is comprised of all

points that are closer to this local resource than any other. We

also refer to a resource’s Voronoi cell as its basin of attraction.

We stress that when resources are rare, the basin of attraction

will usually contain many points that are a distance greater

http://rsif.royalsocietypublishing.org/
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than ‘ from the resource. If a consumer is located at such a

point, it will not visit any resources during that unit interval

of time.

The fundamental goal in the analysis of our model is to

understand the number of encounters that occur due to the

presence of a particular type of resource. We define the

resource-driven encounter rate E to be the expected number of con-

sumers that choose the same resource as the focal consumer per

unit interval of time. In figure 2, the focal consumer encounters

0, 2 and 1 other consumers when visiting its nearest detectable

resource. This reveals a fundamental dynamic in the model:

that intermediate levels of supplemental resource availability

can produce the highest encounter rates. When resources are

scarce, resource-driven encounters are rare because it is unlikely

that the focal consumer is near enough to a resource to detect it.

On the other hand, when resources are common, encounters are

rare because nearby consumers have local resources of their

own to visit.

To estimate E for a given parameter triplet (r, k, ‘), we simu-

lated 1000 independent landscapes, calculated the resulting

number of encounters for the focal consumer in each, and then

took the average of these observations. For most of our

simulations, we used the parameter ranges k [ (0, 10) and ‘ [

(1, 14). As described in appendix A.3, for every triplet (r, k, ‘)

there is an associated triplet (1, ~k, ~‘) for which E is the same. We,

therefore, always set r¼ 1 in our simulations and use the

transformation ~k ¼ k=r and ~‘ ¼ ffiffiffi
r
p

‘ to compute E when r= 1.
2.2. Mathematical model for pathogen invasion
To place our encounter rate results in the context of disease

ecology, we employ a simple stochastic model of pathogen

spillover between two ‘adjacent’ populations. Using terminol-

ogy from Viana et al. [34], we assume that the disease is initially

absent in the target population, our main population of inter-

est. In order for any infections to occur, the pathogen must

first be introduced into the population. Introduction events

take place when an infectious individual from a nearby main-

tenance population (in which the disease is endemic) infects a

susceptible individual in the target population. Owing to our

interest in transient seasonal effects, the results are expressed

in terms of the duration T of the resource increase.

We make three central assumptions:

— the timescale of an outbreak is small relative to the time it

takes for significant changes in population size to occur;

— each introduction of a pathogen involves just one initial

infectious individual, and

— the arrival times of pathogen spillover events are

independent.

Under these assumptions, the initial pathogen invasion

process is intrinsically stochastic. Similar to the invasion

model proposed by Drury et al. [35], we model pathogen intro-

ductions as a Poisson process with rate parameter gspillover. In

other words, we assume that the intervals of time between

pathogen introduction events are exponentially distributed

and the average time between these events is 1/gspillover. For

the transmission events among individuals in the target popu-

lation, we use a stochastic susceptible–infectious–susceptible

(SIS) model. Because the total population size is fixed in

this model, it is only necessary to track the state transitions

for the infectious group, whose population size at time t is
denoted I(t). The transition rates for our continuous-time

Markov chain (CTMC) are given by

I ! I þ 1 at rate l(I) ¼ (gspillover þ bI) 1� I
N

� �

and I ! I � 1 at ratem(I) ¼ nI,

where N is the target population size, n is the clearance (or

disease-related mortality) rate and b(1 2 I/N ) is the average

number of transmissions per unit interval of time by

an infectious individual when the infectious population has

size I.
While this simple model of transmission ignores other

potentially relevant characteristics (e.g. latent periods, popu-

lation turnover and acquired immunity), our present focus is

on how consumer–resource interactions modulate trans-

mission dynamics in the early introduction phase. We are

specifically interested in the probability that the level of infec-

tion can reach an endemic state in the target population

before the period of resource increase dissipates. Given our

context that the disease dynamics take place over a large area

and the pathogen introductions are relatively rare, we

introduce a fourth assumption:

— each pathogen introduction resolves itself independently

in the target population (either to extinction or invasion).

Mathematically, this is tantamount to omitting the gspillover

term in the transition rate formulae and treating each pathogen

introduction event independently. The ‘endemic equilibrium’

is the minimum size for the infectious population such that

the rate of increase is less than or equal to the rate of decrease.

We consider a pathogen introduction to be ‘successful’ if the

size of the resulting infectious population eventually exceeds

the endemic equilibrium value:

I� ¼ min {i [ {1, . . . ,N} : l(i) � m(i)}: ð2:1Þ

We then study the continuous-time Markov chain fI(t)gt�0

with the transition rates

I ! I þ 1 at rate lðIÞ ¼ bI 1� I
N

� �

and I ! I � 1 at ratemðIÞ ¼ nI:

In a sense made rigorous by Kurtz [36], when N is

large this stochastic system behaves more and more like an

associated ordinary differential equation (ODE),

dy
dt
¼ by(1� y)� ny, ð2:2Þ

where we interpret y(t) as the proportion of the population

that is infectious at time t. If b . n and y(0) . 0, then y(t)
converges to the equilibrium value y* ¼ 1 2 n/b. Otherwise

y(t)! 0 as t!1. Following the terminology used by Ball

[37] (see also Heffernan et al. [38]), we refer to R0 ¼ b=n as

the reproductive ratio.

In contrast with the ODE model, no matter how large N
is, in the stochastic model there is always a chance that an

infectious lineage will go extinct before it reaches an endemic

state. In figure 3, we display 10 stochastic SIS paths with a

population size of 50 with b ¼ 2 and n ¼ 1. Some of these

paths quickly go extinct, while others reach the endemic

state. Overlaid on the stochastic paths is Ny(t), the rescaled

solution to the associated ODE (2.2), with initial condition

Ny(0) ¼ 1. In appendix B, we review how to approximate

http://rsif.royalsocietypublishing.org/
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Figure 3. Pathogen invasion model and simulations. (a) Pathogen introductions (index infections) occur at a rate gspillover. (b) Number of infectious individuals
resulting from the introduction of one infectious individual in a population of size N ¼ 50. Ten sample paths for the stochastic SIS model defined in §2.2 are plotted
(red lines) with the solution to the analogous ordinary differential equation model (black curve). Our representation for having achieved the endemic state is I

*
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. (Online version in colour.)
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Figure 4. Empirical monthly carcass availability and jackal visitation to carcass sites data from ENP. (a) For each month – year pair, the number of observed carcasses is
counted (x-axis). We plot the number of jackals recorded at each carcass versus the number of observed carcasses in the corresponding month. Jackal counts at carcasses are
colour-coded by month of the year as indicated by the bar chart in the upper right corner. Points are shaded so that darker shading indicates more observations. Regression
lines are plotted for each month in the corresponding colour. Inset: The monthly average number of observed total carcasses (solid bars) and zebra carcasses (striped bars).
(b) For each month – year pair, the average number of jackals observed at carcasses is plotted. Repeated months are connected by lines.
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the probability of successful invasion assuming that a

pathogen has been introduced at time zero:

pinvasion ¼ P{I(t) hits I� before 0 j I(0) ¼ 1}:

To connect the resource-driven encounter rate, E, to the

pathogen-transmission model, we first note that not all encoun-

ters involving infectious and susceptible individuals lead to a

new infection. For example, in our model, a resource-driven

encounter is defined to occur if two individuals visit the

same resource site in the same week, but this does not mean

they visit concurrently. Even if they visit concurrently this

does not ensure pathogen transmission. We define pinf to be

the probability that a resource-driven encounter results in

transmission. Then our expected number of new infections

arising from a single infectious individual is bþ pinfE and the

corresponding reproductive ratio is

R0 ¼
bþ pinfE

n
: ð2:3Þ
Since our focus is on the effects of resource abundance on

encounter rates, we will primarily consider changes driven

by seasonal resource density. We, therefore, will consider a

time-dependent version of the basic reproduction ratio,

which we denote R0(t) :¼ (bþ pinfE(t))=n, and investigate

if and when R0(t) is greater than one and how its value

changes throughout the year. Changes in E(t) can be

driven by changes in any of the resource-driven encounter

model parameters (i.e. consumer density, resource density or

detection distance).

2.3. Model application to jackals in Etosha National
Park

Data collection. Jackals were captured from January 2009 to July

2010 in central ENP as part of a larger study on jackal move-

ment and anthrax ecology (Bellan et al. [21]). Twenty-two

adult jackals were fitted with GPS (global positioning system;

African Wildlife Tracking, Pretoria, Republic of South Africa)

http://rsif.royalsocietypublishing.org/
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collars based on the requirement that they were large enough

to limit the collar to less than 6% of the animal’s body

weight. Movement data were acquired from collars by VHF

radio-tracking animals and downloading recorded hourly

GPS fixes with UHF download. Owing to challenges associ-

ated with acquiring downloads, there is some variation in the

time intervals between recorded locations. In some cases,

there are missing data points; and in a few cases, observations

were made more frequently than once per hour. The duration

of time each collared animal was observed also varied greatly,

from a few weeks to 2 years, for a total of 13.5 jackal-years of

(roughly) hourly location data.

ENP staff and, as part of an intensive study on anthrax

ecology, other researchers routinely record carcasses observed

throughout the park. Multiple characteristics of a carcass are

recorded, such as: species, date of observation, level of degra-

dation and cause of death. During the jackal movement

study (January 2009 to November 2010), jackal counts were

recorded for 299 of 411 carcass sites (178 of 244 zebra carcass

sites). These data are displayed in figure 4. Additionally,

motion-sensor camera traps (Reconyx RC55) were deployed

at 31 fresh zebra carcasses to study how scavenger activity

and carcass decomposition processes evolve over time after

an animal’s death (see [39] and electronic supplementary

material, video S2). Cameras were programmed to capture at

a rate of 1 frame per second for 10 s after a motion trigger

with a 60-s delay between when they could be triggered

again, allowing semi-continuous recording of activity for up

to approximately three weeks post-death.

Identifying resource visits. For each recorded instance of a

carcass, we assigned a ‘carcass active interval’ based on its esti-

mated time of death and the level of degradation at the time of

discovery (if recorded). This window lasted up to 6 days. Six

days also served as the baseline duration of availability, used

when low or no level of degradation was recorded. For each

jackal that was tracked in the park contemporaneously with a

known carcass, we computed a ‘time-local average position’,

i.e. the mean of all recorded positions of the jackal during the

carcass active interval. The distance between this average pos-

ition and the location of the active carcass was assigned to be

the distance of a resource visit or non-visit. If the jackal’s mini-

mum distance from the carcass of interest during this period

was less than 100 m, we classified the event as a resource

visit. We chose this distance to account for jackal locations

between the hourly GPS fixes. We also note that this distance

is small relative to the study area in which the jackals move

and corresponds roughly with the side length of the triangles

depicting resource locations in figure 1.

Furthermore, we justify our classification of a ‘resource

visit’ by performing a randomization test that confirms that

carcass presence affects whether a visit or non-visit is recorded.

For example, if our choice of observed distance between

jackal and carcass was too large, we might record visits just

as a result of typical day-to-day jackal movement, rather than

actual directed movement to the carcass. We ran our visit

identification algorithm on 1000 sets of randomized carcass

locations. For each site, we held the time that the site was avail-

able constant and reassigned the location by sampling (without

replacement) from the recorded carcass locations. For each per-

muted dataset, we then calculated the number of ‘resource

visits’ in the same way as described above for the observed

data. Using the true carcass location data there were 10 and

44 visits from jackals with a time-local average of 10þ km
and 5þ km, respectively, from the carcass locations. Out of

1000 sets of randomized carcass locations, the maximum

number of 10þ km and 5þ km visits was 6 and 15, correspond-

ing to a p , 0.001 for both distances, and indicating that there is

a highly significant association between jackal locations and

identified carcass sites.

Statistical data analysis of resource visitation response. We chal-

lenged the predictions of our resource-driven encounter model

by examining how the number of jackals observed at carcass

sites varied with carcass density in ENP using multivariate

regression. To account for over-dispersion in the jackal

counts at carcass sites data, we fit a negative binomial general-

ized linear model with the number of observed carcasses as a

predictor variable and the number of jackals observed at the

carcass site as the response variable (available from January

2009 to November 2010). We also included predictor variables

for each month of the year to allow for variation in environ-

mental effects (e.g. wet/dry season), population processes

(birth pulses, dispersal, etc.), variation driven by turnover in

researchers present in the field, and the daily activity patterns

of researchers. To be precise, let yi be the response variable

for the number of jackals observed at a carcass when there

are i carcasses. Then

log (yi) ¼ b0 þ
X11

j¼1

bj0{month¼j} þ bcarci: ð2:4Þ

For example, in an April with i total carcasses, the expected

number of visitors observed at a carcass would be

exp (b0 þ b3 þ bcarci).
3. Results
By way of simulation and analysis, we are able to characterize

the most prominent qualitative features of the expected

number of encounters experienced by a focal consumer, as

they depend on the expected resource density k and the maxi-

mum distance of detection ‘. While we report the results of

the specific model described in the previous section, as long as

a model is consistent with the listed assumptions, then our fun-

damental conclusions are the same: there is a non-monotonic

relationship between the expected resource-driven encounter

rate and the resource density; the maximum potential encounter

rate can be large in terms of its impact on the critical disease ecol-

ogy parameter R0; and, somewhat surprisingly, low resource

densities are associated with the largest encounter rates.

3.1. Analysis of the consumer – resource model for
encounter rates

We summarize the emergent dynamics of our mathematical

model as follows. For fixed values of r and ‘:

— From the point of view of an available resource (carcass), the
number of visitors decreases with k. The presence of additional

resources increases the number of options for consumers

and so, as k increases, the expected number of visitors at

a given resource site decreases.

— From the point of view of an individual consumer, the number of
encounters increases, then decreases with k. When resources

are scarce, most consumers will not be close enough

to detect them. Increasing k means that more and

more consumers visit resources, leading to increased
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consumer–consumer interactions. The effect is not mono-

tonic though. When resources are abundant, consumers

will generally detect more of them. Owing to this increase

in available options, it becomes less likely that multiple

consumers will visit the same resource.
From the point of view of a given resource site, there are

two limiting factors on the number of visitors: (i) the size of

the resource’s basin of attraction, as defined by the Voronoi tes-

selation described in §2.1 and presented in figure 2; and (ii) the

consumers’ limited distance of detection. As k increases, the

resource’s basin of attraction decreases in size, therefore, limit-

ing the pool of consumers that would choose it. In §3.2, we

present an analysis of the ENP data, wherein we find some

physical evidence that the number of jackals expected at a par-

ticular carcass decreases with the number of carcasses available

at the time.

From the consumer point of view, a focal consumer is

always in the basin of attraction of some resource (figure 2);

however, when resources are scarce it is unlikely that it will

be close enough to detect the nearest resource. On the other

hand, when resources are abundant, the area of the basin of

attraction can be very small compared to the focal consumer’s

detection area, limiting the pool of potential consumers that

might share the resource. In figures 5 and 6, we provide a com-

prehensive view of the dependence of a focal consumer’s

encounter rate E on resource density. In appendix A, we pro-

vide the details of our mathematical analysis of the model

and rigorously demonstrate certain prominent features of the

relationship between encounters and resource availability:

namely, the asymptotic power law in both the scarce and

abundant resource regimes, as well as in the small and large

distance of detection extremes. Furthermore, we provide an

approximate formula for the resource density k* that leads to
the maximum number of encounters for a given distance of

detection and consumer density.

Asymptotic results. In figure 5 we see that E, the expected

number of encounters for the focal consumer, exhibits power

law behaviour in both the small- and large-k regimes. Regard-

less of the value of ‘, all of the encounter rate curves overlap in

the large-k regime. For small k, the log–log slope is the same

for all ‘, but the leading coefficient differs. In theorem A.1,

we demonstrate that when resources are scarce (small k), the

resource-encounter function is asymptotically linear in k.

Furthermore, we are able to establish the leading coefficient,

yielding the small-k approximation E � rkp2‘4, which is also

validated by simulation. For example, in figure 5, the black

dotted line is the small-k approximation when ‘ ¼ 1, which

agrees well with simulations (teal dots) for k , 0.1. It is not

possible to derive a rigorous estimate for the large-k regime

because the analysis reduces to a major unsolved problem

in spatial point process theory (see paragraph preceding

theorem A.5). Nevertheless, we argue that E scales with k21

in the abundant resource limit. Following the discussion in

appendix A.3, we present the large-k approximation E � r=k

(figure 3, black dashed line). The correct leading coefficient

appears to be larger than r, but we were unable to obtain the

exact value by mathematical analysis.

Characterizing the encounter rate peak. For reasons discussed

in §3.4, perhaps the most important ‘landmark’ of the resource-

encounter function is its peak. Unfortunately, it is difficult to

directly analyse the magnitude of the peak and the corres-

ponding critical resource density. However, there is a natural

first-order estimate that involves the small- and large-k

approximations. Solving for their intersection yields the

estimate k� � (1/p)‘22 and E(k�) � rp‘2, where k* is the

resource intensity that leads to the maximum resource-driven

encounter rate. From figure 5, it is clear that this is an overesti-

mate, but not dramatically so. Using 1000 simulations at an

array of k and ‘ values, we found the following estimates

using a linear regression (depicted as grey lines in figure 6a)

k� � 0:536‘�2 and E(k�) � 1:48r‘2: ð3:1Þ

While the exponents align well with those found by looking at

the intersection of the small- and large-k approximations, we

were unable to obtain a satisfactory explanation of the leading

coefficients through direct mathematical analysis.

Dependence on distance of detection. In addition to character-

izing the encounter rate’s dependence on k, we are also able to

obtain an understanding of the asymptotic dependence of the

resource-driven encounter rate on the maximum distance of

detection parameter ‘. As ‘! 0, the encounter rate function

behaves like ‘4 (theorem A.1). As might be expected, this func-

tion is monotonically increasing in ‘ and saturates to a limiting

value for large ‘ (theorem A.5). The corresponding simulation

results are displayed in the right panel of figure 6. The limiting

value corresponds to the expected area of the basin of attraction

in which the focal consumer resides. As mentioned earlier, this

exact value is not known, but it scales like k21, which is why

the limiting values in the right panel of figure 6 are largest

for the smallest values of k.

Reducing the dimension of the parameter space. Though there

are three parameters in the mathematical model, we found

that there are truly only two degrees of freedom in the par-

ameter space. As shown in appendix A.3, for every triplet

(r, k, ‘), there is a corresponding triplet (1, ~k, ~‘), where

~k ¼ k=r and ~‘ ¼ ffiffiffi
r
p

‘, such that the expected numbers of
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encounters for the focal consumers are the same, i.e.

E(r, k, ‘) ¼ E(1, ~k, ~‘):

Notably, ~k and ~‘ are non-dimensional quantities and all for-

mulae introduced in the previous section can be expressed

using them

small-k approximation: p2~k~‘
4
, large-k approximation: ~k�1,

peak resource density (~k�): (p~‘
2
)�1, encounter rate peak: p~‘

2
:

Both non-dimensional quantities have informative biological

interpretations. While it is straightforward to understand the

significance of ~k ¼ k=r (the ratio of the resource density to

the consumer density), the meaning of ~‘ ¼ ffiffiffi
r
p

‘ is more

subtle. If we imagine breaking up the landscape into territories

of equal size, then each consumer would be allocated a region

of area 1/r. In order to relate territory area to detection distance,

we define a characteristic territory length. One natural way to

define the territory length scale is the square root of the area,

in this case 1=
ffiffiffi
r
p

. If the regions are square, then 1=
ffiffiffi
r
p

would

be the length of each side. We view ~‘ ¼ ‘=(1=
ffiffiffi
r
p

) as the ratio

of the distance of detection to the typical length of a consumer’s

space allocation. Visually, this amounts to dividing the detec-

tion distance into territory length intervals. Thus, in this

simplified setting, ~‘ is roughly the number of defendable

(i.e. non-overlapping) territories a consumer is willing to

cross in order to visit a resource.

3.2. Validation of a model prediction: visitation at
resource sites decreases with resource density

The mathematical model makes predictions about both full-

population scale encounter rates and local single-resource site

encounters. For the latter, from the perspective of a given car-

cass site, the model predicts that the maximum number of

visitors should be observed when the resource density is

the lowest. This is because in the sparse resource-density

regime there is little to no competition for consumers. As the

resource-density increases, the expected number of visitors

should decrease. We consulted the ENP dataset to investigate

whether this effect can be observed for jackals and their

tendency to visit carcasses that seasonally vary in abundance.
In the study area [21], the number of carcasses available for

jackal scavenging varies seasonally (figure 4a inset). Between

February and April, there is a resource pulse resulting from

annual anthrax outbreaks in the local ungulate population.

These outbreaks occur during the end of the wet season

[19,20]. The timing and severity of anthrax outbreaks appears

to be different between 2009 and 2010. The difference in severity

provides an opportunity to make comparisons between the same

months of the year but with very different numbers of available

carcasses. In March and April, for example, the average number

of jackals observed at carcasses decreases markedly from 2009 to

2010 when there are more carcasses available. In fact, for eight of

the 11 months where pairwise comparisons are possible, the

average number of jackals observed at a carcass decreased

when more carcasses were available in that month (figure 4b).

In our negative binomial generalized linear model, we

found a significant negative correlation between the number

of observed carcasses and the observed number of jackals

at a carcass (bcarc ¼20.030, 95% CI: [20.043, 20.018]).

This result is consistent with our model prediction that at

medium to high resource densities, the expected number of

resource-driven encounters decreases with carcass density.

3.3. Model parametrization using Etosha National
Park data

Our estimate of the resource density, k, is based on carcass sur-

veillance data from the ENP during 2009 and 2010 [22]. The

average number of carcasses recorded each month (figure 4a)

was divided by four to get a weekly number of carcasses avail-

able. Since not all carcasses are observed, we followed Bellan

et al. [39] in multiplying by a scaling factor of four to account

for expected unobserved carcasses. We then divided the

expected weekly number of carcasses available in each

month by the area of the study region from Bellan et al. [21],

approximately 1000 km2. This area contains all of the locations

where carcasses were observed and jackal positions recorded.

The resulting k estimates ranged from 0.005 km22 (August

and November) to 0.043 km22 (April).

As suggested by the non-dimensionalization argument

above, we interpret r as the density of defendable jackal

territories. Non-overlapping jackal territories in ENP were
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estimated to be between 4 and 12 km2. This is comparable to

estimates that were made for jackal populations in coastal

Namibia (0.2–11.11 km2 [40]) and South Africa (3.4–21.5

km2 [41]). Noting the observation from Bellan et al. that jack-

als are ‘unusually dense’ in ENP [21], we set the typical jackal

territory size to be 5 km2, so that r ¼ 0.2 km22.

The interpretation of the parameter ‘ from the data requires

some discussion. In the mathematical model, ‘ is the maximum

distance at which a consumer can detect and then respond to a

resource. We can think of the model as assuming that the prob-

ability of detecting a resource is one within a distance ‘ and

zero outside that distance. Of course, in reality, this detection

probability likely decreases steadily as a function of distance.

The range of detection also likely depends on environmental

conditions (e.g. surrounding vegetation density) and specific

characteristics of individuals (e.g. age and sex) that are

beyond the scope of our model. Rather than identify a specific

value that we definitively claim to be the best estimate of ‘, we

used the jackal movement data to find a range of reasonable

values and then focused our investigation on two values that

showcase the contrasting regimes predicted by our model.

In figure 7, we display a scatter plot of all jackal average pos-

itions relative to known carcasses and mark each with a teal dot

or a grey x depending on whether the jackal visited the carcass

or not. Jackals were observed to visit known carcass sites as far

as 15 km away, but a large majority of carcasses visited were in a

range of 0–4 km. As expected, the probability that a jackal

visited a resource decreased with distance, but it is not

known whether this was because the jackals were not aware

of more distant carcasses, or because there were other carcasses

or alternate resources nearer by. In §3.4, we use the two values

‘ ¼ 4 and 10 and the associated encounter-rate curves are

displayed in figure 8. Each was generated by averaging the

results of 10 000 simulations at each of 300 values for k.

3.4. Placing model results in the context of disease
ecology

In §2.2, we described our stochastic small-population model

for pathogen invasion. We say that an invasion is ‘successful’
if it achieves a population level equivalent to what would be

the endemic equilibrium of the deterministic version of the

model. There exists an explicit formula for the probability

of invasion, but it is difficult to interpret in terms of the par-

ameters of the model. So, following Ball & Donnelly [42], we

use an approximation for the true value (see equation (B 1)

and further discussion in appendix B). This reduces our

analysis to determining whether the total rate of transmission

(which is affected by the resource-driven encounter rate) is

greater than the disease-related mortality rate n.

To assess whether a change in the consumer encounter

rate is ‘large’ in the context of jackals and rabies, we followed

Rhodes et al. [29] in establishing a background rate of pathogen

transmission (b ¼ 1 week21) and a disease-related mortality

rate (n ¼ 1.4 week21) yielding the reproductive ratio

R0 ¼ b=n � 0:7. Since R0 < 1, rabies is found to be subcritical.

Using the month-by-month encounter rate values appear-

ing in figure 8, which were generated using the parameter

http://rsif.royalsocietypublishing.org/


Table 1. Parameters used in the disease ecology analysis.

value units definition source

b 1 week21 transmission rate [29]

n 1.4 week21 rabies mortality rate [23,29]

k 0.005 – 0.043 km22 carcass density ENP data analysis

r 0.2 km22 jackal territory density [21,40,41]

‘ 4 – 10 km max distance of detection ENP data analysis

t 1 week timescale of resource availability and visitation ENP data analysis
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Figure 9. Disease model result incorporating encounter rate model simulations and empirical carcass density estimates from ENP. Time-dependent rabies repro-
ductive ratio, as defined in equation (2.3), where the corresponding number of resource-driven encounters for each month is displayed in figure 8 as the intersection
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values displayed in table 1, we calculated the time-dependent

reproductive ratio for six scenarios and displayed them in

figure 9. Figure 9a,b corresponds to the distance of detection

choices ‘ ¼ 4 and ‘ ¼ 10, respectively. In each case, we varied

the probability of infection parameter pinf to demonstrate its

impact on the final result.

When ‘ ¼ 4, the resource density for each month is near or

below the critical resource density k*, i.e. the density for which

the maximal encounter rate occurs. So an increase in resource

density leads to an increase in the resource-driven encounter

rate and resulting reproductive ratio, regardless of the pinf

value. However, because the peak of the encounter-rate curve

is relatively low (approx. five per week, figure 8) the reproduc-

tive ratio, defined in equation (2.3), remains below the critical

value of one (figure 9a). On the other hand, when ‘ ¼ 10,

most of the monthly resource densities are greater than k*

(figure 8). In those cases, increases in resource density lead to

decreases in the resource-driven encounter rate and resulting

reproductive ratio. In this regime, we see that the months

with low carcass availability are those most vulnerable to

pathogen invasion (figure 9b). For ‘ , 4, we infer from figures

5 and 9a that the inclusion of resource-driven encounters

will have minimal impact on the expected time-dependent

reproductive ratio.

We note that the magnitude of change in R0 is directly

dependent on the estimate for jackal territory density r (recall
equation (3.1)). If pinf ¼ 0.02 and if r ¼ 1 instead of r ¼ 0.2, for

example, the April R0 for ‘ ¼ 4 would be (by way of combining

(2.3) with (3.1)) approximately 1.07. A similar modification for

‘ ¼ 10 would result in an August R0 of 2.86. These results

can readily be translated to a probability of successful invasion

over the course of a resource increase of duration T. As

described in §2.2 and appendix B, successful pathogen inva-

sions arrive according to a Poisson process with rate

gspilloverpinvasion, where pinvasion ¼ max {0, 1�R�1
0 }. Assuming

the transmission rate is constant over the period of interest,

the probability of invasion is 1� exp (gspilloverpinvasionT).
4. Discussion
In this work, we have developed a framework for analysing

the impact of changes in resource availability on the rate of

conspecific encounters among consumers and express our

results in the context of disease ecology. Given a landscape

of consumers and resources, we essentially ask the question:

would adding one more resource site lead to more or fewer

encounters among the consumers?

We have proposed a novel consumer–resource interaction

model to investigate this question. Through a combination of

numerical simulation and mathematical analysis, we have

identified and characterized two qualitatively distinct
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parameter regimes. In a low-resource regime, adding more

resources leads to more consumer–consumer encounters; in a

high-resource regime, adding more resources leads to fewer

consumer–consumer encounters. In the high-resource regime,

our model prediction is consistent with classical foraging

theory. For example, in any model that results in an ideal free

distribution of consumers, adding more resource patches

should lead to less aggregation at resource sites, and therefore

fewer encounters. For the low-resource regime though, our

model results are dictated by the limited distance of detection,

which has received less attention in the foraging literature.

The utility of our model is that it can be used to predict

the qualitative dynamics of a system once certain fundamen-

tal parameters are estimated: the consumer density (r), the

resource density (k) and the maximum distance of detection

and response (‘). The low- and high-resource regimes are sep-

arated by a peak in the number of encounters. One might

expect that the critical resource density associated with the

maximum number of encounters would depend on consumer

density, but we find that it depends only on the maximum

distance of detection: k* � 0.5‘22 (see equation (3.1), §3.1.)

To work through a specific case study, we used location data

for a population of jackals and the carcasses upon which they

scavenge in ENP. While some model parameters (k and r)

are fairly straightforward to estimate, others are not (see §3.3

for our approach to estimating the parameter ‘ in particular).

One notable challenge that arises is that the definition of an

‘encounter’ is intrinsically subjective, depending strongly

on the question of interest (also see Gurarie et al. [43] and

White et al. [44] for further discussion on this point). To relate

our resource-driven encounter rate to a rate of pathogen trans-

mission from infectious to susceptible individuals, we

introduced a corrective ‘probability of infection’ factor pinf.

Because pathogen transmission is essentially impossible to

directly observe, proper inference for such a parameter would

likely require population-level disease incidence data that does

not currently exist. In response to this uncertainty in parameter

values, we display model results that emerge from a range of

reasonable values for both pinf and ‘. The key takeaway is that

for certain combinations of biologically relevant parameters,

we confirm that small changes in the resource landscape can

lead to substantial changes in pathogen transmission dynamics.

In fact, our simulations show that a sudden scarcity of a resource

can have a larger effect on encounter rates than a resource pulse

(figure 5). In the context of ENP, this can be seen by comparing

the model results for a month with high resource availability

(April) to a month with low resource availability (August) in

figures 8 and 9.

Building upon existing investigations into how changes in

resource and consumer densities induce changes in disease

dynamics, our work suggests that the relationship between ter-

ritory size and the distance of resource detection plays a crucial

role in determining infectious disease outcomes. To use the

present context for an example, we note that jackals may use

visual cues from vultures to identify carcass sites ([45] and anec-

dotal observations by an author and colleagues). If vulture

populations decline, as has now been documented in both

Asia and Africa [46], the detection distance for jackals could

decrease, potentially causing a pathogen invasion regime

shift. Interestingly though, the specific example of declining

vulture populations exemplifies the complexity of consumer–

resource interactions. In an experiment conducted by Ogada

et al. [47], the authors found that there were increased
encounters among mammalian scavengers when vultures

could not see and react to carcasses (in contrast with figure 6b).

4.1. Opportunities for incorporating landscape
heterogeneity

In order to study the effects of changing resource availability

on encounter rates, we made some important simplifying

assumptions about the consumer–resource landscape.

Distribution of consumers. Our model assumes that consu-

mers are Poisson distributed across the landscape. We

acknowledge that in reality the distribution of jackals

and other territorial consumers might be under-dispersed rela-

tive to a Poisson model. Distributing consumers based on a

model with lower variance would reduce the number of consu-

mers located within the vicinity of any focal consumer and thus

would reduce the resulting encounter rate. Qualitatively, this

would not affect our encounter rate results since the reduction

would be consistent across all parameter values considered.

Relaxing this assumption in future work would inform the

magnitude of reduction in encounters and have implica-

tions for whether the number of encounters supports a rabies

reproduction number greater than one.

Distribution of resources. We assumed that the duration of

resource availability and visitation, t, was constant. Resources

are made available to consumers simultaneously and the

number of consumers does not affect how long a resource is

viable for consumption. Variation in resource quality, geo-

graphical characteristics and local environmental factors can

affect the model through multiple parameters. Resource sites

that attract vultures might be detectable from larger distances

than resources that do not, causing variation in ‘. Small car-

casses may be rapidly depleted, decreasing t1, and may not

satiate consumers, decreasing t2. We might expect similar

changes in the duration of resource availability and duration

of satiation overall when carcasses are scarce. These changes

in duration of availability can further influence the probability

of infection term pinf. In terms of the selection algorithm,

a consumer might not choose the closest available resource if

one of greater quality is just a little bit farther away. Our

model assumes uniformity in resources and, compared with

predictions that would follow from each of these possible modi-

fications, it produces a lower variance in the number of visitors

to a given site. Future work could include an individual-based

simulation that allowed resources to appear and disappear con-

tinuously in time based on how many consumers used them

and the expected duration of availability.

4.2. Opportunities for integrating more detailed animal
behaviour

The complex relationship between resource allocation, consu-

mer behaviour and pathogen spread deserves further study.

We constructed our model to be detailed enough to examine

our primary question, but simple enough to permit rigorous

mathematical analysis. While there are many ways to extend

the model to account for more nuanced behaviour, we

highlight a few.

Resource detection and selection. There are other natural

models for the consumer’s ability to detect resources, as well

as for the algorithm determining which resource is visited, if

any. For example, one could posit that there is imperfect detec-

tion and that the probability of detection decreases with a
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consumer’s distance from the resource. Also, one could relax

the restriction that the consumer always picks the closest

detected resource. An informal investigation suggested that,

as long as we pose assumptions consistent with those outlined

at the beginning of §2.1, adopting alternative model specifica-

tions does not change the qualitative description of our results

reported in §3.1. We opted for the version that yields the most

explicit analytical results, but note that changes to model

assumptions would likely change the value of the critical

resource density k* as well as the height of the associated

encounter rate peak. For example, our model could be adapted

to allow jackals to visit multiple carcasses during a week.

In that case, we would expect additional encounters and thus

an increase in the magnitude of the encounter rate peak.

Additionally, incorporating social behaviours involved in

detecting and selecting resources could have a qualitative

impact on our results. It would be interesting to consider an

alternate model where a consumer’s choice to visit a resource

was not independent from other consumers. Carcasses with

many jackals present may be less desirable, due to increased

competition for available flesh and possibly a heightened

safety risk. However, it may be easier to detect carcasses when

other jackals are already present at a carcass. Thus, it is not

immediately clear whether we should expect encounters to

increase or decrease in this scenario. Additionally, one could

account for behaviour away from resource sites such as the ten-

dency to avoid territorial conflicts when possible [23] and to

travel efficiently (e.g. along roads instead of through thick

brush). Moreover, it has recently been shown that heterogeneity

in consumer personalities can be intimately tied to emergent

population-scale properties like foraging efficiency and contact

structure [11]. Including these factors is beyond the scope of this

work, but might be crucial in specific applications.

Modified behaviour of individuals. In this theoretical investiga-

tion, we have assumed uniformity among individuals in order

to focus on the effect of resource availability on encounter rates.

However, heterogeneities between potential hosts and their

contact rates have important implications for disease dynamics

[48–50]. In the context of jackals, dispersing juveniles will likely

have a higher than average expected encounter rate. Accordigly,

they may contribute disproportionately to rabies spread.

Additionally, behavioural changes associated with the dis-

ease status of an individual may affect its expected encounter

rate. Developing a theory for susceptible–infectious encounter

rates that considers both types of individuals will be especially

important for infections that alter host behaviour (e.g. rabies).

Specifically, we note that the manner in which a rabid animal

detects and selects resource sites could be much different

than that of a susceptible individual. We leave the additio-

nal detail needed to provide a full characterization of rabies

transmission dynamics for future exploration.

Off-site encounters. At present, our model considers the

relationship between resource availability and the consumer

encounter rate specifically at resource sites. However, a

change in resource availability will also likely influence other

types of encounters. For example, when consumers are forced

to make long treks to scarce resources, they may be exposed

to unfamiliar individuals. Distinguishing between typical

encounters (e.g. with family members and territorial neigh-

bours) and unique encounters with new individuals could be

important for determining transmission dynamics [8,51].

Dynamic population counts. We considered a fixed population

density (i.e. r, the jackal territory density). However, population
sizes change on multiple timescales. Jackals have birth pulses

that will change the local jackal population size on an annual

basis (although, pups may not contribute substantially to patho-

gen spread). In the long term, consumer population size may

respond to resource availability; when resources are abundant

more consumers can be supported in the same area. This

allows for smaller territories (increases in r). Specifically in

Etosha, zebras and other ungulates are attracted to a grassland

foraging area south of the salt pan. When compounded with

anthrax outbreaks, it is possible that increased abundance of

the highly desirable carcass food source in this area could help

support an unusually dense jackal population. Considering

figure 5 and equation (3.1), we see that if the consumer density

varies with the resource density, then there are two competing

effects: while increasing k can decrease the number of encoun-

ters for fixed r, a simultaneously increasing r can overcome

this effect. In order to fully characterize the effects of resource

availability, future work could study encounter rates and

population dynamics in tandem.
4.3. Concluding remarks
Substantial progress has been made in showing how consumer

aggregations at resources can affect disease dynamics [17,18]

and, separately, that uses data on contact networks to quantify

heterogeneity in pathogen transmission [44,49]. However,

to date these studies have not fully leveraged the surge in

high-frequency animal movement data [52–54]. Here we

show how, for a specific disease system, these data can

inform estimation of the contact rate process, a critical com-

ponent of pathogen transmission [55,56]. We highlight the

importance of framing such empirical analyses within theory,

identifying general principles that underpin the interaction

between resources, movement and transmission.
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Appendix A. Mathematical analysis of the
resource-driven encounter model
The simplicity of the resource-driven encounter model invites

a rigorous asymptotic analysis. More than demonstrating the

non-monotone relationship between resource density and

the consequent encounter rate in the consumer population,

we can obtain the exponents of the power laws that govern

the relationship.

In what follows (and in the main text) when we write

w(x) � xa as x! a, we mean that there exists some constant

C [ (0, 1) such that

lim
x!a

w(x)

xa
¼ C:

For example, a result we will use below is that if Y � Pois(l)

for some l . 0, then P{Y . 1} � l2 as l! 0. This is because

P{Y . 1} ¼ 1� P{Y ¼ 0}� P{Y ¼ 1}

¼ 1� e�l � l e�l,

and using the Taylor series expansion for the exponential

(or simply L’Hôpital’s rule), we have

lim
l!0

1

la
P{Y . 1} ¼ lim

l!0

1� e�l � l e�l

la
¼

0, if a , 2
1
2 , if a ¼ 2

1, if a . 2

8><
>: :

ðA 1Þ

For higher order terms, we will use Big-Oh notation: we say that

f(x)¼ O(g(x)) near x¼ a if there exist constants C . 0 and L . 0

such that if jx 2 aj , L, then jf(x)j � Cjg(x)j.
As in the main text, k and ‘ denote the resource intensity

and maximum distance of detection, respectively. In the pres-

entation of our results, we will assume that the consumer

density r ¼ 1. In appendix A.3, we will discuss how to

modify the results when r= 1.

We take the domainO to be a circle of radius R . 3‘ centred

at the origin. There is a focal consumer located exactly at

the origin. Resources are distributed throughout O as a

Poisson spatial process with intensity k. Other, non-focal con-

sumers are distributed throughout O as a Poisson spatial

process with intensity one. Let x0 ¼ (0, 0) and enumerate

the non-focal consumer locations fx1, . . ., xNg, where

N � Pois(jOj). Furthermore, let z1, . . ., zZ be the resource

locations where Z � Pois(kjOj). For each pair 1 � i � N and

1 � j � Z, let dij : ¼ jxi 2 zjj. For each i [ f0, . . ., Ng, let

hi :¼ {j : dij ¼ min1�j�Z dij}. In other words, hi is the index of

the resource that is closest to the ith consumer. For notational

expediency, we will write the index of the resource closest to

the focal consumer, h0, to simply be h.
In the above notation, we can express b, the number

of resource-driven encounters experienced by the focal

consumer, to be

b :¼ j{i [ {1, . . . , N} :hi ¼ h}j and E :¼ E(b): ðA 2Þ

Given a set of resource locations, it is useful to think of the

landscape partitioned according to the associated Voronoi

tessallation. That is, neglecting a set of measure zero,

O ¼
[Z
i¼1

Oi, where Oi :¼ x [ O : jx� zij ¼ min
j[{1,...,Z}

jx� zjj
� �

:

We say that Oi is a basin of attraction for resource i: all consu-

mers located in Oi will choose resource i as their resource to

visit if it is within their detection radius. We define B(x; r)

to be the circle of radius r centred at the location x. Then

the distribution of the encounter variable b conditioned on

a given resource landscape L ¼ {zi}
Z
i¼1 is

bjL� Pois(jOh > B(zh; ‘)j)0jzh j�‘, ðA 3Þ

where we recall that h is the index of the resource chosen by

the focal consumer and 0A ¼ 1 if the event A occurs, and is

zero otherwise.
A.1. Small resource density and/or small detection
distance

Theorem A.1. Let E ¼ E(k, ‘) be defined as in (A 2). Then E � k

and E � ‘4 as k and ‘ go to zero, respectively. To be precise,

lim
k!0

1

k
E(k, ‘) ¼ p2‘4 and lim

‘!0

1

‘4
E(k, ‘) ¼ p2k: ðA 4Þ

Proof. We first introduce some notation. Let N(r) and Z(r)

denote the number of consumers and resources within a dis-

tance r of the focal consumer. We proceed by conditioning on

the number of resources that are near the focal consumer. We

partition the sample space V as follows:

V0 ¼ {Z(‘) ¼ 0},

V10 ¼ {Z(‘) ¼ 1, Z(3‘)� Z(‘) ¼ 0},

V11 ¼ {Z(‘) ¼ 1, Z(3‘)� Z(‘) � 1},

and V2 ¼ {Z(‘) � 2}:

Naturally, it follows that E(b) ¼
P

i E(b jVi)P{Vi} and we will

find that the dominant term is the one associated with V10.

Looking at the other terms, first observe that E(b jV0) ¼ 0

since, if there are no resources to consume, the focal

consumer will not have any encounters.

To deal with the event V2, we apply equation (A 1)

above, noting that the number of resources within detec-

tion distance of the focal consumer has the distribution

Z(‘) � Pois (kp‘2). It follows that for small k, P{V2}�k2

and for small ‘, P{V2} � ‘4. To bound the conditional

expectation E(b jV2), observe that the number of resource-

driven encounters experienced by the focal consumer must

be less than or equal to the number of consumers that are

located within a distance of ‘ of the focal resource (the

resource chosen by the focal consumer). Because this is a

region of size p‘2, we have E(b jV2) � p‘2. Together

we have that

E(b jV2)P{V2} ¼ O(k2‘6):
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For the event V11 we again exploit that, when the detection

distance or resource density is small, it is unlikely that there

will be more than one resource near the focal consumer. By

independence of the resource distribution in disjoint regions

P{V11} ¼ P{Z(‘) ¼ 1}P{Z(3‘)� Z(‘) � 1}

¼ (kp‘2 e�kp‘
2

)(1� e�8kp‘2

),

since the area of the annulus covering the region that is between

a distance of ‘ and 3‘ of the origin is 8p‘2. It follows that

P{V11} ¼ O(k2‘4). Meanwhile, using the same upper bound

on the number of resource-driven encounters experienced by

the focal consumer, we have E(b jV11) � p‘2. Therefore,

E(b jV11)P{V11} ¼ O(k2‘6):

Turning our attention to the event V10, if there is only one

resource in the focal consumer’s detection radius, and the

resource is the only one in the larger 3‘ radius circle centred

at the origin, then all consumers within a radius ‘ of the focal

resource will choose the same resource as the focal consumer.

In other words, the number of encounters conditioned on V10

is bjV10
� Pois(p‘2). What was an upper bound in previous

cases is now equality. It follows that E(b jV10) ¼ p‘2. To

compute the event’s probability we argue as before,

P{V10} ¼ P{Z(‘) ¼ 1}P{Z(3‘)� Z(‘) ¼ 0}

¼ (kp‘2 e�kp‘
2

)(e�8kp‘2

): ðA 5Þ

Therefore,

lim
k!0

1

k
E(b) ¼ lim

k!0

1

k
kp2‘4 e�9kp‘2 ¼ p2‘4

and

lim
‘!0

1

‘4
E(b) ¼ lim

‘!0

1

‘4
kp2‘4 e�9kp‘2 ¼ p2k

as claimed. B
A.2. Analysis in the high resource and large distance of
detection regimes

In the high resource density and large distance of detection

regime, we are unable to get exact results. This is due to a

fundamental barrier in the analysis that we will describe

below. In the high-density regime, we can provide what

appears to be a lower bound on E that, from the numerics,

seems to scale with E as k!1.

Conjecture: E(k, ‘) � 1

k
as k! 1:

Our conjecture is based on the following heuristic. Recall

that Oh is the basin of attraction that contains the focal

consumer. Then

— Conditioned on the landscape of resources, the number of

encounters experienced by the focal consumer is Poisson

distributed with mean equal to its containing basin of

attraction. Therefore, E(b) ¼ E(jOhj).
— Unconfirmed estimate: E(jOhj jZ ¼ z) � jOj=z.

— E(jOj0Z.0=Z) � 1=k as k! 1.

The third part of the heuristic is established by lemma A.4

below. The second part of the heuristic is justified by the

following.
Lemma A.2. Let a resource landscape be given as described above
and let the total region O be partitioned according to a Voronoi dia-
gram generated using the resource locations fz1, . . ., zZg. We
denote the areas of each of these basins of attraction fA1, . . ., AZg.

Let x � Unif(O) be a random location in the landscape and
define h to be the index of the basin of attraction that contains
this point. Then

E(Ah jZ ¼ z) � jOj=z:

Remark A.3. Unfortunately, at this time, we are not able

to extend the result to establish the claim that the basin of

attraction specifically containing the origin has an expec-

ted area that is larger than O=z. Numerics strongly support

this conclusion.

Proof.

EðAh jZ ¼ zÞ ¼
Xz

i¼1

AiPfh ¼ ig

¼
Xz

i¼1

A2
i

jOj

¼ jOj
Xz

i¼1

Ai

jOj

� �2

� jOj
z

Xz

i¼1

Ai

jOj

 !2

¼ jOj
z

,

where, in the last line, we have used the Cauchy–Schwarz

inequality. B

Lemma A.4. Suppose Y � Pois(l). Then

lim
l!1

lE
0{Y.0}

Y

� �
¼ 1: ðA 6Þ

Proof. Recall the exponential integral function

Ei(x) ¼
ðx

�1

et

t
dt,

for x . 0, where the integral is taken in the sense of the

Cauchy principal value. The exponential integral function

can be written in terms of the series [57].

Ei(x) ¼ gþ ln(x)þ
X1
k¼1

xk

kk!
:

For large x, Ei(x) has the asymptotic expansion [58],

Ei(x) � ex

x
1þ 1

x
þ 2

x2
þ 3!

x3
þ � � �

� �
: ðA 7Þ

Following the suggestion of Grab & Savage [59], we note that

E
0{Y.0}

Y

� �
¼
X1
k¼1

1

k
lk e�l

k!
¼ e�l(Ei(l)� g� ln (l)), ðA 8Þ

where g is the Euler–Mascheroni constant. Combining (A 7)

and (A 8), we arrive at the desired result. B

There is a fundamental mathematical barrier to making

more progress on this problem. The preceding analysis

reduces the problem to analysing the distribution of areas

of cells generated by Poisson Voronoi tessellations, but this

an outstanding mathematical problem [32]. In particular,

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170555

15

 on October 11, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
there is no known expression for E(jOhj), the expected area of

the basin of attraction that contains the focal consumer. This

prevents us from obtaining a result for the large distance of

detection regime that is explicit in k.

Theorem A.5. E(k, ‘) is an increasing function in ‘ and

lim
‘!1

E(k, ‘) ¼ E(jOhj): ðA 9Þ

Proof. For a given k . 0, let Lk denote a landscape of

resources generated by a spatial Poisson process with inten-

sity k. For each such landscape, let bjLk
(‘) be the number of

encounters for the focal consumer. As noted above in

equation (A 3), this is the number of consumers located in a

radius ‘ of the focal resource multiplied by one or zero

depending on whether the focal resource is within radius ‘

of the focal consumer. For a fixed landscape, note that

lim
‘!1

Oh > B(zh; ‘) ¼ Oh and lim
‘!1

0jzhj�‘ ¼ 1:

As such,

lim
‘!1

E(bjLk
(‘)) ¼ E(jOhj jLk):

Because this holds for all Lk, the proposition follows. B
A.3. Converting results for non-unit consumer density
All of the preceding results have been expressed under the

consumer density assumption r ¼ 1. Similarly all simulations

were conducted with r ¼ 1. Extending the earlier notation,

let E(r, k, ‘) be the expected number of encounters for the

focal consumer for the given triplet of parameters.

We claim that, although there are three fundamental par-

ameters in the model, there are only two degrees of

freedom in the parameter space. That is to say, given a triplet

(r, k, ‘) there exists a unique pair (~k, ~‘) such that

E(r, k, ‘) ¼ E(1, ~k, ~‘). Namely,

E(r, k, ‘) ¼ E 1,
k

r
,
ffiffiffi
r
p

‘

� �
:

To see this, let N(3‘) and ~N(3~‘) denote the number of consu-

mers in the model within three times the maximum distance

of detection for the parameter triplets (r, k, ‘) and (1, ~k, ~‘),

respectively. Let Z(3‘) and ~Z(3~‘) denote the same for

resources. Because consumers and resources are distribu-

ted as Poisson spatial processes, these values completely

define the system. Furthermore, because Poisson random

variables are completely parametrized by their means, it

follows that E(r, k, ‘) ¼ E(1, ~k, ~r) if E(N(3‘)) ¼ E( ~N(3~‘)) and

E(Z(3‘)) ¼ E(~Z(3~‘)). For the first constraint,

E(N(3‘)) ¼ E( ~N(3~‘)), rp9‘2 ¼ p9~‘
2
,

from which it follows that ~‘ ¼ ffiffiffi
r
p

‘. Meanwhile

E(Z(3‘)) ¼ E(~Z(3~‘)), kp9‘2 ¼ ~kp9~‘
2

meaning that ~k ¼ k‘2=~‘
2 ¼ k=r.

We note that this reduction of the problem to two par-

ameters amounts to a non-dimensionalization of the three

parameter model. The units of r and k are both

[length]22, while ‘ has units of [length]. As a result,

~k ¼ k=r and ~‘ ¼ ffiffiffi
r
p

‘ are both dimensionless.
Revisiting the theorems of the previous sections we have

the results:

lim
k!0

1

k
E(r, k, ‘) ¼ p2r‘4, lim

‘!0

1

‘4
E(r, k, ‘) ¼ p2rk, ðA 10Þ

and

E(r, k, ‘) � r

k
as k! 1: ðA 11Þ
Appendix B. Mathematical analysis of the
pathogen invasion model
Just as it is for the ODE SIS model, the reproductive ratio is a

critical dimensionless parameter in the stochastic SIS model.

When R0 � 1, then as N!1, pinvasion! 0 [60]. On the

other hand, when R0 . 1, then as N!1, the probability

of invasion is strictly greater than zero. There exist exact sol-

utions to this hitting probability problem, however, such a

presentation makes it difficult to understand how pinvasion

depends on b and n. Therefore, pinvasion is commonly approxi-

mated by computing the complement of an extinction

probability for an associated branching process [42]. In

terms of our CTMC model, this is equivalent to introducing

the assumption that the size of the susceptible pool is very

large with respect to the initial infectious population, and set-

ting (N 2 I )/N � 1 [61]. The modified rate functions for the

CTMC are linear and take the form

l(i) ¼ bi and m(i) ¼ ni:

The infectious population process is then a Galton–Watson

branching process. The only two outcomes for such a process

are extinction or explosion to infinity. The analysis reduces

to recasting the CTMC as a discrete time generation-by-

generation branching process that is defined in terms of the

offspring distribution, i.e. the distribution of the number of

offspring an individual might have before dying. In our case,

the ‘offspring’ are the infections spawned by a single individual.

Since the infection events occur according to a Poisson process

with rate parameter b and the death of the individual occurs

at rate n, the number of successful infections before death is

Geometrically distributed with success probability b/(b þ n).

One can then show that, under the assumption that b . n,

lim
t!1

I(t) ¼ 1 w:p: 1� n
b

0 w:p: n
b :

�

If b � n, the process goes extinct with probability one. It is from

this calculation, and our formula for the basic reproductive ratio

that we adopt the approximation

pinvasion � 1�R�1
0 , b . n

0, b � n:

�
ðA 12Þ

With this in hand, we can approximate the probability

that there is a successful pathogen invasion in the target

population during the period of increased resource avail-

ability, t [ [0, T ]. For each pathogen introduction, we label

it ‘successful’ with probability pinvasion and label it ‘unsuc-

cessful’ otherwise. According to standard Markov chain

theory [62] the arrival of successful introductions is a ‘thinned’

Poisson process, with arrival rate gspilloverpinvasion. Intuitively,

this means that the time it takes for a successful invasion is

scaled by a factor of pinvasion in terms of the ‘rate of arrival’.

It follows that the time of the arrival of the first successful
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spillover event has an exponential distribution with rate par-

ameter gspilloverpinvasion. Therefore, the probability of a
successful invasion occurring during a resource pulse of

length T has the form 1 2 e2Tgspilloverpinvasion.
sif.royalsocie
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