
Couple serostatus patterns in sub-Saharan Africa illuminate the relative 
roles of transmission rates and sexual network characteristics in HIV 

epidemiology 
 

Steve E. Bellan1,2*, David Champredon3 Jonathan Dushoff3,  
Lauren Ancel Meyers4,5 

 

Affiliations: 
1Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 
Athens, Georgia, United States of America. 

2Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United 
States of America 
3Department of Biology, McMaster University, Hamilton, Ontario, Canada  
4Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States 
of America 
5The Santa Fe Institute, Santa Fe, New Mexico, United States of America 

*Correspondence to:  Steven E. Bellan, steve.bellan@uga.edu 
 

Keywords: Demographic and Health Surveys; serodiscordant couple; heterosexual transmission; 
marriage; mortality; parametric survival analysis; survival bias; extramarital transmission; 
HIV/AIDS; mathematical modeling; cohabiting partnership. 

 
 

  



Abstract 
 
HIV prevalence has surpassed 30% in some African countries while peaking at less than 1% in 
others. The extent to which this variation is driven by biological factors influencing the HIV 
transmission rate or by variation in sexual network characteristics remains widely debated. Here, 
we leverage couple serostatus patterns to address this question. HIV prevalence is strongly 
correlated with couple serostatus patterns across the continent; in particular, high prevalence 
countries tend to have a lower ratio of serodiscordancy to concordant positivity.  To investigate 
the drivers of this continental pattern, we fit an HIV transmission model to Demographic and 
Health Survey data from 45,041 cohabiting couples in 25 countries. In doing so, we estimated 
country-specific HIV transmission rates and sexual network characteristics reflective of pre-
couple and extra-couple sexual contact patterns. We found that variation in the transmission rate 
could parsimoniously explain between-country variation in both couple serostatus patterns and 
prevalence. In contrast, between-country variation in pre-couple or extra-couple sexual contact 
rates could not explain the observed patterns. Sensitivity analyses suggest that future work 
should examine the robustness of this result to between-country variation in how heterogeneous 
infection risk is within a country, or to assortativity, i.e. the extent to which individuals at higher 
risk are likely to partner with each other.  



Introduction 
 
HIV epidemic severity varies extensively across sub-Saharan Africa (SSA), where prevalence 
has peaked at under 1% in some countries and surpassed 30% in others1. Studies examining the 
cause of this between-country variation generally fall into one of two camps2,3. The first 
proposes a central role of biological cofactors which affect HIV infectivity (circumcision, STI or 
other coinfections, viral load, pathogen or host genetics)4–8, while the second focuses on sexual 
network characteristics (in particular, the prevalence of concurrent partnerships, but also partner 
turnover rates, migration, and age-disparate relationships)9–15. Cohort and intervention studies 
have demonstrated a clear relationship between biological cofactors and transmission 
efficiency16,17  but, because of their limited geographic expanse, are insufficient for 
understanding how geographic differences in these cofactors drive regional variation in epidemic 
prevalence. Ecologic studies modeling correlations between known cofactors and prevalence are 
useful for hypothesis generation, but are highly susceptible to confounding18,19. Similarly, 
mathematical modeling studies have shown that certain sexual network characteristics 
(particularly concurrency) should exacerbate HIV epidemics. But ecologic studies examining 
whether these same network characteristics drive differences between countries provide mixed 
results, possibly because they suffer from susceptibility to confounding and from methodological 
difficulties associated with measuring sexual-network characteristics19–28.  
 
Most researchers agree that both biological cofactors and sexual network structure can affect 
HIV transmission dynamics. Nevertheless, after decades of active debate, it remains unclear 
what actually drives the large observed differences between countries’ epidemic trajectories. 
This debate has practical relevance because the various explanations for what drives between-
country variation in HIV prevalence may have important implications for intervention 
implementation and effectiveness. 
 
We investigated drivers of between-country variation in epidemic severity in SSA by using 
couple serostatus data to disentangle the components of transmission. Couple serostatus patterns 
vary widely across SSA. This can be most clearly seen by examining summary indices, such as 
the serodiscordant proportion (SDP; the proportion of couples with at least one HIV seropositive 
partner that are serodiscordant). SDP varies considerably across SSA, ranging from 37% to 85%, 
in inverse correlation with prevalence8,29,30. There is a common perception that these SDPs are 
larger than expected,31,32 given the intuitive argument that intercourse between stable 
serodiscordant partners should rapidly produce positive concordance. Heuristic arguments have 
attributed large SDPs to high extramarital transmission29,31,32, heterogeneity in HIV 
infectiousness or susceptibility8,29,33–35, population-level HIV prevalence29, and AIDS-related 
mortality36. However, the relative impacts of these factors on SDP remain poorly understood29. 
 
Here, we fit mechanistic models of HIV transmission to Demographic and Health Survey (DHS) 
data on stable cohabiting couples to investigate what processes could explain between-country 
variation in HIV prevalence and couple serostatus patterns. We evaluate common explanations 
for between-country variation in epidemic prevalence and exclude those that are inconsistent 
with individual-level data. The models we are able to fit assume homogeneity, i.e. that, given 
exposure to an infected individual, all individuals exhibit the same risk of infection. However, 
we used simulation-based sensitivity analyses to investigate the robustness of our conclusions to 



heterogeneity in the risk of infection and assortativity therein (whether individuals with higher 
risk of infection are more likely to form partnerships with each other). 
 

Methods 
 
The appendix provides a complete model description and all material needed to reproduce our 
analyses. All analyses were performed in R37. First, we fit models to DHS data to estimate 
transmission rates and sexual contact coefficients for each country’s data. Second, we conducted 
a meta-analysis of parameter estimates from each country to understand which processes could 
explain between-country variation in peak HIV prevalence.  Third, we conducted sensitivity 
analyses to explore how these patterns are affected by processes that both were and were not 
included in our fitted model. 
 
Formulation of the Couples Transmission Model 
 
We investigated the processes governing the relationship between couple serostatus patterns and 
HIV prevalence by fitting a model of HIV transmission in stable, cohabiting couples to DHS data 
for 2003–2012, from 45,041 couples for all 25 countries in SSA for which the DHS included 
HIV testing (Table S1-S2). This model extends our previously described framework for 
analyzing cross-sectional couples data38. Generally, unlike cohort data, cross-sectional data 
cannot be analyzed via survival-like analyses because individuals are only sampled once. In this 
framework, we are able to analyze cross-sectional survey data as cohort data because, by 
assuming that surveyed individuals were seronegative at their sexual debut, we have two 
observation time points per individual. The model used to analyze these data is analogous to a 
survival analysis for infection data with couples (versus individuals) as the unit of analysis. This 
model combines characteristics of survival analysis with those from mathematical transmission 
modeling.  

Specifically, we allowed for three hazard rates for each gender, corresponding to pre-couple, 
extra-couple, and within-couple routes of infection. As illustrated in Figure 1, we denote ߚ as the 
rate of transmission from the infected to the uninfected partner of a serodiscordant couple 
(within-couple transmission). The rate at which individuals are infected by casual partners (i.e. 
either pre-couple or extra-couple partners) is a product of three factors: the transmission rate, a 
contact rate, and the probability a contact is infectious. The first factor is ߚ; this is analogous to 
the use of transmission rates estimated from serodiscordant couple cohort studies39 as proxies for 
a more general HIV transmission rate. The second factor is the rate at which individuals engage 
in sex with casual partners, ܿ. The third factor is the probability that their sexual partners are 
infectious, P(t), which denotes the time-varying infectious HIV prevalence (proportion infected 
and not on antiretroviral therapy (ART) as estimated by UNAIDS [1]) in the opposite sex’s 
population. As denoted by the subscripts in Figure 1, we estimate gender-specific parameters and 
we estimate different contact coefficients, ܿ, for pre- and extra-couple transmission routes. This 
structure allows us to separately estimate gender-specific transmission rates (ߚ) underlying all 
routes of infection and gender-specific sexual contact coefficients during pre-couple and extra-
couple sexual activity (c).  
 



We refer to ܿ as a sexual contact coefficient rather than a contact rate because it incorporates 
both the rate of contact with casual partners and also those partners’ probability of being 
infectious relative to the average population (where average population infectious prevalence is 
represented by P(t)). Although we do not model sexual network structure explicitly, our 
estimated sexual contact coefficients reflect risk associated with network structure: any increased 
risk from non-stable partners due to network characteristics (e.g., partner acquisition rates, 
concurrency, age-disparate relationships, other sexual network characteristics) would lead to 
greater rates of pre-couple or extra-couple transmission and, thus be reflected by greater fitted 
contact coefficients. Section 3a of the Supplementary Information provides a more in-depth 
discussion of the assumptions underlying this conceptualization of the transmission process. 
 
Further model assumptions include that infected individuals die of AIDS according to 
empirically derived survival distributions40. This accounts for an important survival bias—
couples observed during a survey are only those in which both partners survive up to the survey 
date38. We also assumed that newly infected individuals are five times as infectious for a two 
month-long acute phase post-infection41. We assumed that all individuals were infected at the 
same gender-route specific rates and with the same sexual contact coefficients (homogeneity 
assumption) due to computational obstacles to fitting a heterogeneous model. However, in a 
sensitivity analysis, we assessed the robustness of our results to this assumption by simulating 
models that included individual-level heterogeneity and between-partner assortativity therein. 
 
Estimating Transmission Rates and Sexual Contact Coefficients by Fitting the Model to Data 
 
To formally estimate these six parameters (two transmission rates and four sexual contact 
coefficients) we fit the above model to the DHS data sets. To do so requires calculating the 
likelihood of the observed data for given parameters. We did this by iteratively calculating the 
probability of each partner’s serostatus and survival for each month of sexual activity from their 
sexual debuts until their DHS interview date. This yields a likelihood for each couple–i.e. given a 
couple’s relationship history and values for the six parameters, the probability that the couple 
exhibited the serostatus that they actually exhibited in the DHS. We used Bayesian Markov 
Chain Monte Carlo to fit this model to the data from each country, yielding the transmission 
rates and sexual contact coefficients that maximized the joint probability of all observed couples 
being alive and exhibiting their observed serostatus on their DHS survey date. The ten West 
African countries analyzed exhibited very few HIV-positive individuals in their sampled 
populations. This made it difficult to fit our model. We thus pooled these countries together for 
analysis.  
 
Our method does not estimate when (seroconversion times) or how (transmission route) each 
infected individual was infected. Rather, fitted transmission rates and contact coefficients reflect 
the estimates that are most consistent with observed data while integrating uncertainty in all 
infected individuals’ seroconversion times and routes of infection. All results shown are medians 
of posterior distributions with 95% credible intervals. We assessed the accuracy and precision 
with which we could estimate these six parameters by fitting this model to data simulated in a 
separately coded model in which the true underlying parameters were known. 
 
In our previous work38 (in particular, Figure 2 and the Discussion), we gave intuition for why 



estimation of these six parameters is possible through the model fitting procedure described 
above. Here, we briefly provide two complementary ways to understand why these parameters 
are estimable from these data. For the first way, consider how each parameter affects couple 
serostatus patterns. For instance, if male-to-female transmission rates are higher, we should see 
fewer male-positive serodiscordant partnerships, especially amongst couples that have been 
together for a long time. Similarly, if men have high pre-couple contact rates (lots of risky casual 
sex before entering into a stable couple), this would increase the proportion of recently formed 
couples that are male-positive serodiscordant, particularly amongst men who had long periods of 
sexual activity prior to couple formation. For the second way, consider how two partners’ 
relationship history can inform when an infected partner is likely to have been infected. 
Importantly, the data we analyze are before ART was available in these countries or when ART 
coverage was extremely low (e.g. Figure 1 in 38). Thus, any infected individuals sampled in these 
DHS surveys were likely to have been infected in the previous decade; otherwise they would 
have died before the survey. So for serodiscordant couples that formed 15 years ago, the infected 
partner was extremely likely to have been infected extra-couply, not pre-couply (because they 
would likely already be dead if infected that long ago) or within-couply (because their partner is 
uninfected).  

Meta-Analysis of Drivers of Variation in HIV Prevalence 
 
Our estimated transmission and sexual contact parameters varied significantly among countries 
(see Results). This implies that some parameters must vary between countries in ways that 
explain their distinctive couple serostatus patterns and prevalences. To explicitly assess which 
parameters drive differences in prevalence, we performed a meta-analysis of the estimated 
parameters from each of our fitted country-specific transmission models. We regressed peak HIV 
prevalence (estimated by UNAIDS 1) against our estimates of transmission and sexual contact 
parameters in weighted univariate regressions and in a weighted multivariate regression 
including all predictors. We also conducted a sensitivity analysis in which the dependent variable 
was HIV prevalence from the analyzed DHS data instead of UNAIDS-estimated peak 
prevalence. 
 
Because it is a proportion, prevalence was modeled on log-odds scale; the explanatory variables 
(the six parameters) are all rates, and were consequently modeled on a log scale. Because 
estimated male and female transmission rates and extra-couple contact coefficients were similar 
within each country, we used the geometric means of male and female estimates for each country 
as explanatory variables to reduce collinearity. Pre-couple contact coefficients differed more 
between genders, so we included them as separate predictors. We then selected the best from 
among these models using Akaike’s Information Criterion corrected for small sample sizes 
(AICc)42. Since the predictors are estimated parameters each with their own uncertainty, we 
weighted each country in the regressions by the inverse variance of the predictor (for the 
multivariate model, by the geometric average variance across predictors).  
 
Counterfactual Simulations of Couple Serostatus Dynamics 
 
To better understand the estimates resulting from our model fitting procedure and their 
regression against prevalence, we conducted simulations to elucidate how each parameter affects 
couple serostatus dynamics. In these simulations, we generated 100,000 couple relationship 



histories (i.e., sexual debuts, couple formation dates, and ages) simulated to represent the 
relationship histories actually observed for each country’s DHS (Figure S1). Using the 
transmission parameters estimated for each country above, we simulated transmission and 
mortality events starting from each couples’ sexual debuts up until their interview date. This 
allowed us to create trajectories of couple serostatus states for each couple over calendar time 
(Figure S2). We summarized the evolution of couple serostatus patterns over the course of the 
epidemic by plotting SDP over calendar time. 
 
We then conducted counterfactual simulations, in which we varied one parameter at a time and 
simulated transmission and mortality for those same relationship histories, plotting the effect on 
the SDP trajectory for each country. Specifically, holding all other parameters constant, we 
varied male and female transmission rates, and pre- and extra-couple contact coefficients from 
zero to ten times their estimated values for each country.  
 
We also used these counterfactual simulations to explore the effects of between-individual 
heterogeneity in infection risk, and of between-partner assortativity in risk of infection. We 
modeled heterogeneity as each individual having a lognormally distributed risk factor that 
elevated or reduced their risk of transmission through any route. We modeled assortativity as 
between-partner correlation in these risk factors.  
 
We neither considered heterogeneity nor assortativity in our fitted model because doing so is 
computationally challenging since it would require presuming each observed individual exhibits 
some unobserved risk factor that may or may not be correlated with their partner’s unobserved 
risk factor. In contrast, simulating (versus fitting) heterogeneity and assortativity is relatively 
straightforward, since we can simulate partners with higher or lower risk with or without 
between-partner correlation, and then explore the subsequent effects on couple serostatus 
dynamics. Assortativity could be induced by host genetic factors that vary between sub-
populations, by partners exhibiting similar co-infections that affect HIV infectivity or 
susceptibility, or simply by variation in prevalence between subpopulations such that individuals 
in geographic proximity, or similar social circles, both exhibit more similar infection risk and are 
more likely to form partnerships. 
 
Data Availability 
 
The raw data that support the findings of this study are available from the Demographic and 
Health Surveys (www.measuredhs.com) upon request. The cleaned datasets containing only 
observations and variables analyzed during the current study are available at 
https://github.com/sbellan61/SDPSimulations along with all analyses performed in this 
manuscript. 
 
Results 
 
Estimated transmission rates and sexual contact coefficients 
 
Table 1 displays summary statistics of the couples data analyzed here, as well as two additional 
variables indicative of risk behavior (condom use at last intercourse, number of lifetime sexual 



partners). Table 2 reports our estimated transmission rates, which span the range of estimates 
reported by serodiscordant couple cohort studies in low-income settings39 and vary substantially 
across countries. Between-country variation in these estimated transmission rates may reflect 
variation in the prevalence of risk factors that affect transmission. These include male 
circumcision, interacting co-infections, host and viral genetics, and likely many other known or 
unknown factors that affect HIV infectivity or susceptibility. We also found substantial 
differences between genders within a few countries. Variation in the ratio of transmission to 
males versus to females and its inconsistency across regions has been observed in previous 
studies16 and could be due to, for instance, variation in circumcision prevalence between sites 
(which reduces male but not female susceptibility). Our estimates of the pre- and extra-couple 
contact coefficients for each country and gender (Table S3) also varied widely, which likely 
reflects differences in sexual network characteristics between countries. 
 
Drivers of between-country variation in prevalence 
 
In our meta-analysis of peak HIV prevalence against these estimated parameters, we determined 
that the best model (according to AICc selection; Table S4) was a univariate model in which the 
transmission rate was the only explanatory variable (Figure 2). We found that the transmission 
rate explained the majority of the between-country variation in peak HIV prevalence (R2 = 59%) 
and remained significant in the full multivariate model (Table 3). In contrast, all models 
containing pre-couple and extra-couple contact coefficients were far inferior and these 
explanatory variables were not statistically significant predictors of peak HIV prevalence in the 
multivariate model. This means that countries with higher estimated extra-couple or pre-couple 
contact coefficients did not necessarily have higher HIV prevalence. In contrast, countries in 
which we estimated higher transmission rates did consistently exhibit higher prevalence. These 
findings were similar in a sensitivity analysis with DHS prevalence (averaged for each country) 
used as the dependent variable instead of UNAIDS-estimated peak prevalence (Figure S3). 
 
We examined whether this finding might be modulated by how infectious we assumed the acute 
phase to be relative to the chronic phase. Our results were quite robust to the assumed acute 
phase relative infectivity, with greater values leading to lower estimated chronic phase 
transmission rates (consistently across countries such that between-country patterns were not 
affected) but negligibly affecting estimates of contact coefficients (Figure S4, Table S5). 
 
Counterfactual simulations to understand the drivers of couple serostatus dynamics 
 
Our counterfactual simulations further clarified the above results, by showing that SDP is 
substantially affected by some parameters while negligibly affected by others. Some parameters, 
if varying between countries would in theory cause between-country variation in prevalence; but 
because they minimally affect SDP, they would not induce the covariation between SDP and 
prevalence that is observed (Figure 2) and thus are not viable explanations for the observed 
prevalence variation (Figure S5). Specifically and as shown in Figure 3, SDP was elevated by 
AIDS mortality, slower transmission rates, higher inter-individual heterogeneity in risk to 
infection, or less between-partner assortativity in risk of infection. SDP was minimally affected 
by pre-couple or extra-couple sexual contact coefficients.  
 



To understand the results in Figure 3, consider that the factors that affect SDP are those that 
modify the duration that a couple spends serodiscordant or concordant positive. Slow 
transmission rates cause couples to spend long periods serodiscordant. Heterogeneity in infection 
risk leads to the accumulation of low-risk couples that stay serodiscordant for very long times, 
and increases SDP.  Assortativity in infection risk, in which higher infection-risk individuals are 
more likely to partner with each other, decreases SDP because it increases the rate at which 
couples form already concordant positive (skipping the serodiscordant state entirely) or the rate 
at which couples transition from serodiscordant to concordant positive (since infected individuals 
are likely to have partners highly susceptible to infection). Death of one partner also causes the 
cessation of a couple serostate. By the time a partner is dying of AIDS (approximately a decade 
post-infection), it is likely they have exposed their partner for a long time. This means that SDP 
will be lower in couples with than those without an AIDS-stage partner. Thus, AIDS mortality 
disproportionately removes concordant positive couples and, consequently, increases SDP. 
Finally, the reason sexual contact coefficients minimally affect SDP is because they play a 
relatively small role in determining how long a couple stays serodiscordant. This is because 
within-couple transmission is the dominant means through which a serodiscordant couple 
becomes concordant positive; and so change in the contact coefficients only minimally change 
the duration of the serodiscordancy state.  
 
Discussion 
 
For decades, the HIV community has struggled to explain the variation in epidemic prevalence 
across SSA. Efforts to disentangle the epidemiological significance of biological and behavioral 
factors have been criticized as too reliant on mathematical transmission models43. These 
models—built from published transmission rates from a few well-documented cohorts and 
hypothetical sexual network configurations5,15,44,45—have demonstrated that both individual-
level risk factors and sexual network characteristics have the potential to affect epidemic 
severity. However, the divergent methods and populations used to estimate model parameters 
and the scarcity of empirically derived sexual networks have precluded a systematic partitioning 
of the relative influence of each factor on epidemic prevalence. Other, cross-sectional analyses of 
empirical data have found correlations between prevalence and biological or self-reported 
behavioral risk factors19,46–48; but such studies are unable to establish causality and are 
susceptible to social desirability bias. Chemaitelly et al. (2014) estimated transmission rates in 
several countries with DHS data similar to that considered here by fitting a compartmental 
transmission model8; but their results’ reliance on fitting to population-level metrics instead of 
individual-level data allows for a highly susceptibility to confounding. 
 
We suggest that the ideal approach to address this question would interpret data using 
mechanistic models capable of distinguishing distinct causal pathways from each other by 
identifying nonlinear patterns in data that can be causally explained by some pathways and not 
others.  To that end, we fit a mechanistic couples transmission model to representative samples 
from 15 SSA countries (and one region) and simultaneously estimated multiple components of 
transmission. Due to computational challenges, we were only able to fit homogenous models that 
do not account for individual heterogeneity or assortativity in infection risk.  We found that when 
interpreted through the lens of these homogeneous models, couple serostatus patterns strongly 
suggest that the principal driver of between-country variation in both HIV prevalence and SDP is 



between-country variation in the transmission rate (Figure 2 and Table 3), and not between-
country variation in sexual contact patterns as previously suggested by other studies29.  
 
In a sensitivity analysis, however, we show that this conclusion may not be robust to 
heterogeneity in infection risk or between-partner assortativity therein. These processes also 
affect couple serostatus patterns, and it is possible that they could vary between countries in 
ways that would weaken the above results. Future work that can estimate between-country 
differences in heterogeneity and assortativity will be necessary to more robustly determine which 
mechanisms can plausibly explain between-country variation in couple serostatus patterns and 
epidemic prevalence. It is important to keep in mind that such methods may reveal that it is not 
possible to distinguish these hypotheses with the available survey data. 
 
In an earlier study fitting the same models to the DHS, we previously demonstrated that risky 
network characteristics (such as concurrent partnerships, partner acquisition rates, age-disparate 
relationships) drive the majority of HIV incidence within all countries analyzed38. This may be 
true for most or all sexually transmitted infections, as sexual contacts with numerous non-stable 
partners fuels transmission far more than the same number of contacts between stable partners49. 
Nevertheless, we point out a nuanced distinction; even if risky sexual network characteristics are 
responsible for the majority of transmission within each country, it still is plausible that 
differences between countries are not explained by differences in network characteristics, but 
instead by differences in underlying transmission rates. Future work examining between-country 
differences in epidemic severity should pay careful attention to this distinction. 
 
While our analysis and results exhibits some similarity to that of Chemaitelly et al. (2014), we 
have also made several advances. First and foremost, here and previously38 we leverage 
individual-level relationship history and serostatus data to understand couple serostatus 
dynamics, rather than relying on population-level statistics. Without individual-level data on 
relationship duration, an analysis cannot accurately represent the denominator of time at risk 
when estimating transmission between serodiscordant partners. We believe this explains why our 
transmission rate estimates (ranging 2.1-20 per 100 person-years) were about half of those of 
Chemaitelly et al. (ranging 4.4-41 per 100 person-years8) for each country, though the country-
order of transmission rates compares closely between the two analyses (Table S6, Figure S6). 
The other main advances of our analysis comprise the explicit estimation of pre-couple and 
extra-couple contact rates for each country; the systematic assessment of which of several factors 
best explain between-country variation in prevalence; and examination of how individual 
heterogeneity in infection risk and between-partner assortativity in infection risk alter serostatus 
dynamics. 
 
If in fact regional variation in transmission rates drives a large proportion of the observed 
variation in HIV prevalence, this has important implications for the prospects of various 
interventions. For instance, this would suggest that the level of effort allocated to known 
effective interventions (e.g., ART coverage, medical male circumcision coverage) necessary to 
reduce incidence below a given threshold could differ dramatically between two communities, 
even if they exhibit similar sexual network dynamics. 
 
Model assumptions and limitations 



 
Our model was designed to capture observed couple serostatus patterns, given limitations of the 
available data. We made many simplifying assumptions and omissions. In addition to the main 
sensitivity analyses highlighted above, we additionally assess the robustness of our conclusions 
to other simplifications below. 
 
While we estimated country-specific transmission rates and sexual contact coefficients, we did 
not explicitly estimate the drivers underlying the observed between-country variation in these 
parameters. Such drivers could include between-country variation in male circumcision, 
interacting co-infections, or host and viral genetics. Data at the individual level were not 
available on these factors from the DHS (of these factors, male circumcision status was available 
for some but not all of the DHS analyzed) and so we were unable to include them. Importantly, it 
is highly likely that not all risk factors for HIV susceptibility or infectivity have been 
characterized. Thus, there may be many unknown factors that explain geographic variation in 
transmission rates. Furthermore, even if we had individual data on some of the known risk 
factors, it remains poorly understood how the myriad factors known to affect HIV transmission 
interact with each other (i.e. are relative risks simply multiplicative or are there interactions 
between known risk factors that further amplify or mitigate risk). Thus, rather than try to tease 
apart the all the constituent factors affecting transmission, we aim only to characterize the 
average transmission rate at the country level. 
 
Most HIV modeling studies in Africa have relied on a single transmission rate for the continent, 
estimated from one or more serodiscordant couple cohort studies. We estimate transmission rates 
and contact coefficients at the country-level to provide greater spatial resolution into HIV 
transmission rates than previously available. Nonetheless, recent work has highlighted the 
substantial subnational variation in HIV prevalence18,50, suggesting that biological and 
behavioral factors vary greatly at even smaller scales. We did not aim to estimate subnational 
variation in transmission rates both due to computational challenges and due to the smaller 
sample sizes available within the DHS when considering subnational levels. However, we do 
believe that subnational studies of variation in transmission rates are warranted in future work. 
 
Higher dissolution rates in HIV-status aware serodiscordant couples51 (compared to other 
couples) could increase SDP by dissolving serodiscordant couples before they become 
concordant positive. Given the scarcity of data, we were unable to assess whether this might 
explain between-country variation in SDP, though a preliminary analysis suggests it is unlikely 
(Supplementary Text Section A7, Figure S7). Indeed, we believe it is unlikely that such 
dissolution would explain significant variation, given the relatively low levels of partner 
serostatus awareness during the period of study52 and lack of evidence that awareness differed 
substantially between countries during the period considered. 
 
Our model includes the treatment as prevention effect of ART on reducing transmission rates by 
modeling the risk of infection from casual partners as a function of the proportion of the 
population that is HIV-infected and not on ART. But, because treatment status was not 
ascertained in these DHS surveys, we could not model the effects of ART on within-couple 
transmission or on survival times of infected partners. In a previous sensitivity analysis38, we 
showed our results are nonetheless robust, since, for the period of study and until recent policy 



changes53, most treated individuals would have become eligible for ART only after a long period 
of exposing their partner to infection. This holds true even considering prevention of mother-to-
child transmission (PMTCT) programs, which expanded ART coverage for pregnant and 
postpartum women. WHO guidelines pre-2010 offered ART to pregnant women starting 28 
weeks into pregnancy and lasting up until 7 days postpartum. WHO’s 2010 guidelines added 
option B, in which women are given the opportunity to stay on ART until the end of 
breastfeeding. Thus, for the period considered PMTCT would have only led to ephemeral 
reductions in transmission from women to their male partners, and would have had a limited 
impact on survival. 
 
With recent increases in ART coverage, however, we expect the relationship between SDP and 
HIV transmission rates to have become increasingly complex because—depending on who 
receives ART and when they receive it in their course of disease—ART can either act to reduce 
SDP (by increasing the life expectancy of concordant positive partners54) or to increase SDP (by 
reducing infectiousness55 and thus increasing the time couples spend serodiscordant). 
 
For a subset of the countries analyzed, the DHS conducted surveys at multiple years within the 
period of analysis. For each of these countries, we chose to pool all DHS surveys across years for 
analysis. We made this choice for two reasons. First, SDP was relatively stable over time across 
surveys (Figure S8). Second, we did not believe we would have sufficient sample size to pick up 
evidence of temporal variation in transmission rates or contact coefficients, particularly since 
cross-sectional couple serostatus patterns observed in a survey reflect transmission dynamics 
occurring over the preceding decade. In estimating a single set of parameters for each country, 
we implicitly assumed that HIV transmission rates and sexual contact coefficients were constant 
over time. Declining HIV prevalence in several countries, however, has been attributed to 
behavioral changes in response to interventions or overall HIV awareness56. Decreasing pre- or 
extra-couple transmission in recent years, while holding transmission rates constant, could 
temporarily decrease the SDP (by reducing the creation of new serodiscordant couples from 
concordant negative couples, while pre-existing serodiscordant couples continue to become 
positive concordant)30. A decreasing transmission rate over time would cause a more direct and 
permanent increase in SDP. Neither of these patterns, however, appears likely to explain the tight 
empirical relationship between SDP and peak prevalence. On the other hand, this pattern is 
parsimoniously explained by between-country variation in transmission rates. 
 
Finally, in view of the range of the DHS and the scope of our study, we necessarily excluded 
many couples because of missing or inconsistent data. A notable exclusion was that of all 
polygamous couples (given the couple-centric nature of our model), which represented a third of 
all couples in West Africa. Nonetheless, the low prevalence, low transmission rates and high 
serodiscordant proportion observed in the included (non-polygamous) couples from West 
African are consistent with our main findings. Previous sensitivity analyses also suggest that our 
results are robust to the exclusion of couples with missing data38 and are roughly generalizable to 
the couples population sampled by DHS. Furthermore, these population samples are likely to be 
more representative of the general population than are the intervention or cohort studies most 
frequently used to understand HIV transmission rates, given their narrow selection criteria and 
the effects of intensive study on participant behavior. 

Conclusion 



 
Couple serostatus patterns in combination with relationship history patterns can provide insight 
into between-country variation in HIV epidemic prevalence across sub-Saharan Africa. That 
greater HIV transmission rates underlie more severe epidemics is a parsimonious explanation for 
the inverse correlation between the serodiscordant proportion and peak epidemic prevalence. 
However, heterogeneity in infection risk, and between-partner assortativity therein, may also 
partially explain this pattern and future work is warranted to distinguish between these 
hypotheses. 
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Table 1. Summary of Demographic Health Survey couples data analyzed with averages shown by country. All durations are given in years. 
 

age 
age difference 

(M-F) 
age at  

sexual debut 
duration of sex before 

couple formation 
partnership 

 duration 
condom used at 

last sex (%) 
# lifetime 

 sexual partners 
Country M F - M F M F - M F M F 

Burundi 36.2 31.3 4.9 22.2 19.4 3 0.9 11 2 2.1 2.0 1.1 

Congo 35.8 30.1 5.7 16.1 15.4 10.2 5.1 9.6 13.6 8.6 14.8 3.8 

DRC 36.8 30.4 6.4 18.2 16.3 7.3 2.8 11.3 3.2 2.2 9.6 2.1 

Ethiopia 36.2 29.5 6.7 20.9 16.6 3.4 1 11.9 1.3 0.9 2.8 1.1 

Gabon 38.4 32.3 6.2 16.7 15.6 11.3 6.3 10.4 18.5 14.7 21 4.5 

Kenya 37 31 5.9 17.5 17.3 8.3 2.6 11.2 4.6 2.8 7.9 2.0 

Lesotho 36.3 30.8 5.5 19 17.7 5.8 1.7 11.4 14.8 16.6 9.6 2.2 

Malawi 34.3 29.2 5.1 18.2 16.6 5.1 1.7 11 9.4 5 3.6 1.5 

Mozambique 34.8 29.2 5.6 17.9 16.3 6.3 2.3 10.5 8.9 6 5.1 1.9 

Rwanda 36.2 32.2 4 21 20.1 4.3 1.3 10.8 4.3 3.7 2.7 1.2 

Swaziland 36.6 30.6 6 19.8 17.3 8.2 4.7 8.6 23.8 24.3 8 2.1 

Tanzania 34.9 29.3 5.6 19.1 17.2 5.9 2.2 10 7.1 5 6.1 1.9 

Uganda 35.9 30.1 5.8 18 16.3 6.8 2.6 11.1 4.6 4.3 7.6 2.2 

WA 37.7 29.6 8.1 19.9 16.3 6.8 2.3 11.1 7.5 3.3 7.2 2.0 

Zambia 35.7 30 5.7 17.6 16.5 6.9 2.3 11.1 13.7 7.7 6.5 1.8 

Zimbabwe 35.4 29.8 5.6 20 17.8 5 1.6 10.4 8.7 4.6 5.8 1.6 

 



Table 2. Estimated HIV transmission rates per 100 person years (95% credible intervals) obtained by fitting a model 
of transmission into and within couples to couples serostatus and relationship history data from Demographic and 
Health Surveys. Gender labels indicate transmission rates to individuals of that gender 

 Country β Country β 
male Burundi 13 (6.1, 25) Mozambique 9.6 (5.7, 14) 

female  16 (8.1, 30)  5.5 (3, 9.1) 

male Congo 4.3 (2, 8) Rwanda 15 (8.3, 23) 

female  3.6 (1.5, 7.2)  14 (9.7, 19) 

male DRC 2.4 (0.41, 7.9) Swaziland 20 (11, 32) 

female  2.1 (0.36, 7)  17 (9.6, 29) 

male Ethiopia 6.8 (3.7, 11) Tanzania 9.2 (6, 13) 

female  7.4 (4.4, 11)  4.7 (2.6, 7.4) 

male Gabon 4.7 (2.2, 8.4) Uganda 11 (7.1, 16) 

female  3.5 (1.4, 7.6)  7.5 (4.5, 11) 

male Kenya 9.8 (5.6, 15) West Africa 4.5 (2.5, 7.3) 

female  9.5 (5.1, 16)  5.2 (3.1, 7.4) 

male Lesotho 13 (6.4, 21) Zambia 12 (6.8, 18) 

female  14 (8.6, 19)  8 (4.7, 12) 

male Malawi 8.3 (4.7, 13) Zimbabwe 15 (9.8, 20) 

female  6.1 (3.6, 8.9)  11 (7.7, 15) 

 
 
  



Table 3. Regression results. Effect sizes and 95% confidence intervals from univariate and multivariate regressions 
of (log-odds) peak HIV prevalence versus the HIV transmission rate ߚ, extra-couple contact coefficient (ܿ), and 
male and female pre-couple contact coefficients (ܿெ,, ܿி,) as fitted from a mechanistic model assuming 
homogeneity in infectiousness and susceptibility within countries. All explanatory variables were regressed on a log 
scale. The best model (bold) as chosen via AICc model selection (Table S4) was the univariate model containing 
only the transmission rate (߂AICc = 4.27 above second best model).  

 univariate (95% CI) P multivariate (95% CI) P 

transmission rate 1.5 (0.79, 2.2) 0.00053 1.7 (0.5, 2.9) 0.0096 

extra-couple contact coefficient -0.86 (-1.7, -0.026) 0.044 0.64 (-0.29, 1.6) 0.16 

male pre-couple contact coefficient -1.5 (-2.5, -0.52) 0.0058 -1.1 (-2.4, 0.15) 0.077 
female pre-couple contact 
coefficient -1.2 (-2, -0.47) 0.0038 0.11 (-1.1, 1.3) 0.84 

 
 
 
 

 



Figure 1. A schematic diagram of the mechanistic couples transmission model that we fit to individual-
level couples relationship history and serostatus data. During a couple’s relationship (black rectangle), 
infected individuals infect each other (blue) at gender-specific transmission rates (ߚெ,  ி); during thisߚ
time individuals are also infected by extra-couple partners (red) at a rate equal to the product of the 
transmission rate, the population HIV prevalence (PM(t), PF(t)), and a sexual contact coefficient 
(ܿெ,, ܿி,). Similarly, individuals can be infected by pre-couple partners (gray) starting from their sexual 
debut up until they form into a couple. The end of the black rectangle denotes the DHS sample date (i.e. 
when couple serostatus is observed). For PM(t) and PF(t), we use UNAIDS HIV gender-specific 
prevalence trajectories and also account for the scale up of ART such that these represent the probability a 
non-stable partner is both infected and infectious. Using Bayesian MCMC, we estimated the transmission 
rates and contact coefficients that yielded the highest probability of all couples exhibiting their observed 
serostatus given their relationship history. 
 
Figure 2. HIV peak prevalence versus the geometric mean (taken due to similarity) of male and female 
(A) HIV transmission rates and (B) extra-couple contact coefficients, and versus (C) male and (D) female 
pre-couple contact coefficients. Colors indicate SDP. Solid and dashed lines show the weighted linear 
regression line and 95% confidence intervals, respectively, for the best model as chosen via AICc (models 
with ΔAICc > 2 compared to the best model are rejected). Univariate models (not shown) corresponding 
to panels (B)-(D) yielded ΔAICc = 9.39, 5.19, and 4.27, respectively, while the full multivariate model 
including all predictors yielded ΔAICc = 5.8 (see Table 3 for further detail on each model’s results).  The 
range of SDPs shown here reflects only those couples included in the model analysis (i.e. excluding those 
with missing relationship data) and thus differs slightly from that given in the main text. 
 
Figure 3. The effects of AIDS mortality and HIV transmission routes on the serodiscordant 
proportion (SDP). In the top row, the thick black lines show estimated historical SDP as fitted to the 
2007 Demographic Health Survey in Zambia (chosen as a representative example); the black points 
indicate the SDP observed in the survey; gray lines show simulated SDP under various counterfactual 
scenarios: without AIDS mortality, with scaled pre-couple or extra-couple contact coefficients, with 
scaled transmission rates, or with increasing amounts of heterogeneity (ߪ indicates standard deviation of 
lognormally distributed risk deviate) or between-partner assortativity (ߩ indicates inter-partner correlation 
in risk deviate) in infection risk. The lower row shows for each country the sensitivity of the simulated 
SDP (Y axis) in 2008 to variation in these same factors (on X axis). Colors indicate each country 
analyzed. Vertical gray bars highlight simulations parameterized as fit to the individual-level data on 
couple serostatus and relationship history. The serodiscordant proportion is extremely sensitive to the 
transmission rate, heterogeneity or assortativity in infection risk; slightly affected by AIDS mortality; and 
relatively insensitive to pre-couple and extra-couple contact coefficients. All simulated SDPs represent 
simulations of 100,000 couples. 
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