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Summary
Background Safe and eff ective vaccines could help to end the ongoing Ebola virus disease epidemic in parts of west 
Africa, and mitigate future outbreaks of the virus. We assess the statistical validity and power of randomised controlled 
trial (RCT) and stepped-wedge cluster trial (SWCT) designs in Sierra Leone, where the incidence of Ebola virus 
disease is spatiotemporally heterogeneous, and is decreasing rapidly.

Methods We projected district-level Ebola virus disease incidence for the next 6 months, using a stochastic model 
fi tted to data from Sierra Leone. We then simulated RCT and SWCT designs in trial populations comprising 
geographically distinct clusters at high risk, taking into account realistic logistical constraints, and both individual-
level and cluster-level variations in risk. We assessed false-positive rates and power for parametric and non-parametric 
analyses of simulated trial data, across a range of vaccine effi  cacies and trial start dates.

Findings For an SWCT, regional variation in Ebola virus disease incidence trends produced increased false-positive rates 
(up to 0·15 at α=0·05) under standard statistical models, but not when analysed by a permutation test, whereas analyses 
of RCTs remained statistically valid under all models. With the assumption of a 6-month trial starting on Feb 18, 2015, 
we estimate the power to detect a 90% eff ective vaccine to be between 49% and 89% for an RCT, and between 6% and 
26% for an SWCT, depending on the Ebola virus disease incidence within the trial population. We estimate that a 
1-month delay in trial initiation will reduce the power of the RCT by 20% and that of the SWCT by 49%.

Interpretation Spatiotemporal variation in infection risk undermines the statistical power of the SWCT. This variation 
also undercuts the SWCT’s expected ethical advantages over the RCT, because an RCT, but not an SWCT, can prioritise 
vaccination of high-risk clusters.

Funding US National Institutes of Health, US National Science Foundation, and Canadian Institutes of Health Research.

Introduction
At the peak of the devastating 2014–15 Ebola virus 
disease outbreak in parts of west Africa, international 
public health agencies and pharmaceutical companies 
committed themselves to assess the effi  cacy of several 
candidate vaccines. Even with the outbreak in apparent 
decline, vaccine trials could prove important to minimise 
future outbreaks of the disease. Various alternative 
vaccine trial designs were proposed, each striking a 
diff erent balance between ethical, logistical, and 
statistical concerns. In February, 2015, an individually 
randomised controlled trial (RCT) was initiated in 
Liberia, and a ring vaccination trial began in Guinea in 
March, 2015.1 A stepped-wedge cluster trial (SWCT) was 
originally proposed for Sierra Leone, but this design has 
been revised to a phased-rollout RCT, the implementation 
of which is imminent.2 In an RCT, trial participants are 
randomly assigned at the individual level to a vaccine or 
control group. In an SWCT, all trial participants are 
vaccinated but in a random sequence of geographically 
distinct clusters of individuals. In the newly proposed 
ring vaccination trial design, contacts of incident Ebola 
virus disease cases are randomly assigned to be 
vaccinated either immediately (as in traditional ring 
vaccination strategies) or after some delay.3 Although the 

SWCT is no longer planned, we assess the tradeoff s 
between this trial design and RCT designs in Sierra 
Leone to inform decisions during similarly challenging 
circumstances that might arise in future epidemics. We 
do not consider the ring vaccination trial, which was 
never proposed for Sierra Leone and which would need a 
diff erent modelling framework to assess it than that 
used in our study.

When the risk of Ebola virus disease remains high, 
testing candidate vaccines with an RCT—in particular, 
assigning trial participants to a control group—can 
present an ethical problem. Phase 1–2 trial results 
suggest that candidate vaccines are safe and have a strong 
promise of effi  cacy. If the medical community believes 
that—in view of the high case-fatality rate of the disease—
trial participants at substantial risk of infection are likely 
to fare better in the vaccinated group than in the control 
group, then an RCT might lack clinical equipoise.4,5 
However, an uncontrolled trial would be susceptible to 
confounding bias, which would erode the reliability of 
resulting vaccine effi  cacy estimates.

In October, 2014, when the incidence of Ebola virus 
disease was still rising in west Africa, the US Centers 
for Disease Control and Prevention (CDC) proposed an 
SWCT in view of these concerns. In theory, SWCTs 
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allow comparison between randomised treatment 
assignments without delaying vaccination to any 
participants.6,7 If practical constraints, such as low 
availability of vaccines or trained personnel, restrict the 
delivery of vaccines, then vaccination of groups as 
quickly as possible while randomising their order could 
avoid the ethical dilemma of withholding vaccines while 
allowing not-yet-vaccinated participants to serve as an 
unbiased control population. However, two plausible 
scenarios exist under which an SWCT loses its ethical 
advantage over an RCT: fi rst, if vaccine delivery is 
delayed deliberately to improve trial power, and second, 
if predictable heterogeneity in risk exists between 
clusters such that prioritising vaccination of high-risk 
clusters is anticipated to be more eff ective than is 
vaccinating clusters in a random order.

Although ethics and logistics govern the acceptability of 
trial designs, the size and structure of a trial determine its 
speed and success in assessing vaccine effi  cacy. 
Randomisation protects against confounding because, on 
average, random assignment of an intervention distri-
butes known and unknown confounders equally between 
trial groups. However, randomisation alone does not 
ensure statistical validity. Another important concern is 
whether or not a study maintains its prespecifi ed target 
false-positive (type I error) rate, usually set to 0·05, which 
is the probability that—in the absence of any eff ect—the 
study will, by chance alone, erroneously conclude that an 
eff ect is present. False-positive rates include spurious 
conclusions that the intervention decreases or increases 

risk. Studies whose design produces a false-positive rate 
that is above this target value are invalid.8 Although other 
study characteristics can also invalidate a study, we assess 
validity with respect to the prespecifi ed false-positive rate 
only. Infl ation of the false-positive rate can arise from an 
inappropriate statistical model that over estimates the 
precision of the eff ect estimate. Importantly, this situation 
can occur even when estimates of an intervention eff ect 
remain unbiased, such as when the clustered nature of 
data is not properly accounted for.8

Finally, even valid trial designs might have insuffi  cient 
statistical power to ascertain that a protective vaccine is 
indeed eff ective (a high type II error rate) and therefore 
waste valuable resources. With the assumption of 
identical trial populations, cluster-randomised designs 
(including SWCTs) typically have lower power than do 
individual-randomised designs (such as RCTs) because 
cluster-randomisation leaves similarities between 
individuals within groups, thus reducing the eff ective 
sample size.9,10

In this Article, we compare the statistical validity and 
power for SWCT and RCT designs in Sierra Leone, 
where declining trends in the incidence of Ebola virus 
disease vary regionally.

Methods
In this study, we compare the false-positive rates and 
power of SWCT and RCT designs in four steps. First, we 
fi t a stochastic exponential decay model to recent Ebola 
virus disease incidence trends in Sierra Leone and use the 
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Research in context

Evidence before this study
We searched PubMed for articles published from Jan 1, 1990, to 
March 3, 2015, using the following search terms: “(Ebola 
vaccine trial) OR (stepped wedge AND [statistic* OR power 
analysis OR Ebola OR infectious disease OR HIV OR dengue OR 
emerging OR outbreak OR epidemic OR pathogen])”, excluding 
studies of non-infectious diseases, and we also identifi ed 
relevant citations within selected articles. We did not identify 
any studies assessing Ebola vaccine effi  cacy trial design. We 
found methodological papers describing power analyses for 
stepped-wedge cluster trials (SWCTs) and randomised 
controlled trials (RCTs), and studies assessing trial design for 
evaluation of candidate vaccine effi  cacy for other infectious 
diseases. Of these reports, only two studies discussed the 
potential eff ects of spatiotemporal variation in infection risk on 
trial design; however, they did not assess the resulting eff ects 
on trial validity or power.

Added value of this study
In this study, we provide an assessment of Ebola candidate 
vaccine effi  cacy trial design and a comparison of RCT and SWCT 
designs in the context of spatiotemporally variable infection 
risk and realistic logistical constraints. We show that 
spatiotemporal variation in infection risk invalidates traditional 

statistical analyses of SWCT designs and develop a permutation 
test that allows valid analysis. Our fi ndings show that, under 
identical logistical constraints and within the present 
epidemiological context of Sierra Leone, an RCT has three-to-
ten-times greater power than an SWCT to detect an eff ective 
vaccine, largely because of an RCT’s ability to prioritise high-risk 
clusters for earlier enrolment. Finally, we argue that the SWCT 
loses its ethical advantages over the RCT if predictable 
heterogeneity in risk exists between clusters such that rollout of 
vaccination fi rst to high-risk clusters is anticipated to be more 
eff ective than is vaccination of clusters in random order.

Implications of all the available evidence
An SWCT design to assess candidate Ebola vaccines in Sierra 
Leone will have little power to detect effi  cacy and might not 
have its anticipated ethical advantages over other randomised 
trial designs. An RCT, by contrast, might have suffi  cient power 
to detect effi  cacy but must start soon to avoid substantial 
reductions in power as the epidemic declines. More generally, 
we note that researchers should be cautious when using SWCT 
or other crossover designs to assess interventions in the context 
of emerging infectious disease epidemics, or in other contexts 
with spatiotemporally variable infection risk.
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model to project district-level incidence. Second, we 
simulate a trial population comprising several clusters, 
each of which is a geographically distinct high-risk 
subpopulation that has a temporally varying hazard rate 
based on our district-level incidence projections. Third, 
across a range of assumed vaccine effi  cacies and for 
600 000 synthetic trial populations, we simulate both RCT 
and SWCT designs. Finally, we analyse the simulation 
data with parametric and non-parametric tests to estimate 
vaccine effi  cacy, assessing the false-positive rates and 
statistical power of trial designs and the corresponding 
analyses.

Projection of district-level incidence in Sierra Leone
Ebola virus infection risk is spatiotemporally 
heterogeneous—ie, both the present risk and the rate of 
decline vary regionally. To capture this variation, we used 
maximum likelihood to fi t exponential decay functions to 
district-level incidence of Ebola disease in Sierra Leone,11 
from each district’s peak incidence to the most recent 
data.12 To project district-level incidence for the next 
6 months, we sampled negative binomial random deviates 
around these decay curves that replicate the overdispersion 
in the recorded incidence data (fi gure 1, appendix p 20).

Simulation of trial populations
Each simulated trial population included 6000 
individuals distributed into 20 clusters of 300 individuals, 
re presenting the structure of the trial originally planned 

in Sierra Leone.13 Clusters represented high-risk sub-
populations at distinct locations, such as personnel 
working in an Ebola treatment unit or a group of front-
line caregivers within a district (eg, health-care workers, 
laboratory personnel, or burial team staff ).14 We allowed 
for both cluster-level and individual-level variation in 
Ebola virus disease risk. Cluster-level variation and 
trends in infection risk were based on our district-level 
projections. Specifi cally, we assumed that each cluster 
lived in one of the districts in Sierra Leone, and we 
created cluster-level hazard trajectories by resampling 
district-level projections (fi gure 2A). We then assumed 
that, without eff ective vaccination, a proportion of the 
projected cases would occur in the trial population. 
Because an estimated 5·2% of Ebola virus disease cases 
in Sierra Leone occurred in health-care workers,15 we 
considered scenarios with this proportion set at 2·5%, 
5%, 7·5%, and 10%. Individual-level variation in risk 
within clusters was modelled with a relative hazard ratio 
that was lognormally distributed around 1 with an SD of 
1, to simulate biological or occupation-related diff erences 
in risk (fi gure 2B).

Simulation of trial designs
We simulated both RCT and SWCT designs within trial 
populations with risks of infection as described 
previously, with a trial start date of Feb 18, 2015, and 
duration of 6 months. In a sensitivity analysis, we varied 
the start dates from Jan 15 until April 1, 2015.

Figure 1: Fitted incidence projection models
Exponential decay functions (black line) fi tted to incidence of Ebola virus disease (blue bars) within four districts of Sierra Leone, with example stochastic incidence 
projections (red bars). The models were fi tted to district-level incidence data from the local peak until Feb 9, 2015, with negative binomial distributions. We estimated an 
average negative binomial overdispersion parameter of 1·2 across districts and used this estimate in projections. The timescale of the charts is October, 2014–May, 2015. 
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Because an SWCT is only ethically justifi ed when 
logistical delays impede simultaneous vaccination of all 
individuals, comparisons between SWCT and RCT 

designs should assume that the same logistical 
constraints apply to an RCT (ie, an RCT with phased 
vaccine rollout). We assumed that only one cluster could 
be vaccinated each week.13 However, because an RCT 
would vaccinate half of the individuals in each cluster, 
this rate of rollout would accomplish half the rate of 
vaccination (150 people per week) in an RCT compared 
with an SWCT (300 people per week). If the limiting 
factor is the number of individuals rather than the 
number of clusters vaccinated each week, then an RCT 
could vaccinate people at the same rate as an SWCT. To 
address this scenario, we also simulate a fast RCT, in 
which half of each of two clusters are vaccinated per 
week (fi gure 3; appendix p 10).

In the SWCT, by defi nition, clusters are vaccinated in 
random order to allow unbiased comparison between 
vaccinated and not-yet-vaccinated clusters, whereas in an 
RCT, we assume that clusters are either vaccinated in a 
random order or prioritised according to recently 
estimated risk. In the latter case, each week the cluster 
(or two clusters for a fast RCT) with the highest incidence 
2 weeks previously is added to the trial. For comparison 
with these phased-rollout RCTs, we also considered an 
ideal scenario, free from logistical constraints, in which 
an RCT could immediately vaccinate half the trial 
population (simultaneous instant RCT). Notably, this 
situation cannot be compared fairly to an SWCT, which 
is predicated on the necessity of delayed rollout.

We assumed a 21-day delay between vaccination and 
the development of protective immunity (hereafter 
referred to as protective delay) but did a sensitivity 
analysis that considered shorter delays.2,16,17 We then 
simulated individual infections based on the hazard 
models described previously and individual immune 
status. We considered scenarios with vaccine effi  cacies of 
0, 0·5, 0·7, or 0·9, and did not include the indirect 
benefi ts of vaccination (ie, herd immunity) within a 
cluster, based on the evidence that health-care workers, 
although at high risk of infection, rarely infect each 
other.18

Statistical analysis
Analyses of RCTs included only person-time within a 
cluster following the development of protective immunity 
in vaccinated individuals therein. Analyses of SWCTs 
included all person-time except for the protective delay, 
with other options explored in a sensitivity analysis 
(fi gure 3; appendix pp 11–13). We analysed simulated trial 
data with three types of approaches: semiparametric or 
parametric regression (ie, the Cox proportional hazards 
mixed-eff ect frailty model and a Poisson regression 
model with cluster-level eff ects); and two non-parametric 
methods based on estimates from these same regressions: 
bootstrap tests and permutation (randomisation) tests. 
For all tests, statistical signifi cance was established 
through the use of a target two-tailed false-positive rate of 
α=0·05, yielding a one-tailed cutoff  of 0·025 for vaccine 

Figure 2: Ebola risk projections in simulated trial populations
(A) Cluster-level projections. An example of simulated weekly Ebola virus infection hazard rate for 20 clusters based on 
district-level projections from Sierra Leone under the assumption that, in the absence of vaccination, 5% of district-level 
cases would occur in trial clusters within each district. (B) Individual-level variation. Mean (red line) and IQR (shaded 
area) of infection risk across individuals in one example cluster. The timescale of the graphs is January–June, 2015. 
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effi  cacy. For each of 300 combinations of assumed 
vaccine effi  cacy, protective delay, trial design, start date, 
and hazard levels, we simulated 2000 trials (totalling 
600 000 trials), with each trial based on a unique set of 
stochastically generated district-level Ebola virus disease 
projections for Sierra Leone. All codes necessary to 
replicate these analyses and a more detailed discussion 
of the methods are provided in the appendix.

Role of the funding source
The funding sources had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The authors were not paid by any pharma-
ceutical company or other agency to write this report. 
The corresponding author had full access to all the data 
in the study and had fi nal responsibility for the decision 
to submit for publication.

Results
First, we consider trials of a vaccine with no eff ect on 
infection risk and assess the false-positive rate—ie, the 
frequency at which trials erroneously conclude that the 
vaccine aff ects risk of infection. All RCT scenarios 
yielded false-positive rates lower than the target α=0·05. 
By contrast, SWCTs showed increased false-positive rates 
as high as 0·09 when analysed with the Cox proportional 
hazards mixed-eff ect frailty model, 0·11 with Poisson 
regression, and 0·15 when analysed with bootstrap 
methods (fi gure 4). These high rates were caused by 
type I errors in both directions (ie, erroneous conclusions 
that the vaccine either decreases or increases risk when it 
actually does not aff ect it). The false-positive rate of the 
Cox proportional hazards mixed-eff ect frailty model 
increased with Ebola incidence in the trial population 
(fi gure 4A) and arose from cluster-level variation in 
hazard trends (appendix pp 15–16). By contrast, the false-
positive rate of the bootstrap approach decreased with 
increasing incidence of Ebola (fi gure 4B) and was 
unrelated to hazard trends or variation therein (appendix 
p 16). Permutation test analyses of SWCTs maintained 
the prespecifi ed target false-positive rate (fi gure 4C).

We focused our subsequent analysis of statistical power 
on two methods that retained the target false-positive 
rate—specifi cally, the Cox proportional hazards mixed-
eff ect frailty model for RCTs and permutation tests for 
SWCTs (fi gure 5). For each design, power is largely 
determined by the number of cases recorded in the trial 
(appendix pp 17–18).

However, power diff ers greatly between trial designs. 
An RCT that rolls out vaccination to clusters in a random 
order provides modest gains in statistical power over an 
SWCT, despite accumulating vaccinated person-time at 
half the rate of an SWCT, in which the full cluster is 
vaccinated. When risk varies both in time and across 
clusters, the RCT allows more direct and sustained 
comparison of vaccinated and unvaccinated individuals 
in similar high-risk settings. The RCT also maintains a 

Figure 4: False-positive rates by trial design and analysis
False-positive rates are shown by trial design, analytical method, proportion of district-level cases occurring in 
trial participants, and order of cluster vaccination (for the RCT). Increases above the target false-positive rate of 
0·05 (horizontal dashed line) indicates an invalid study for SWCT when analysed with a Cox proportional 
hazards frailty model (A) or with cluster-level bootstrap CIs (B), whereas all analyses of RCTs or of an SWCT with 
a permutation test (C) maintain prespecifi ed false-positive rates. Line types indicate whether RCT clusters are 
vaccinated in random order (random; solid line), in order of highest risk (risk-prioritised; dotted line), or all 
simultaneously at the start of the trial (simultaneous instant; dashed line). Underlying hazards are based on 
district-level incidence projections (fi gure 2). We did not apply cluster-level bootstrapping to the RCT designs 
because they rely on individual-level randomisation. The fast RCT results are not shown here but were 
qualitatively similar to those of the RCT. The simultaneous instant design is a hypothetical idealised design and 
is presented here for comparison, but is not regarded as a feasible trial design in this context. SWCT=stepped-
wedge cluster trial. RCT=randomised controlled trial.
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balanced ratio of person-time in vaccinated and control 
groups, by contrast with the SWCT, in which this ratio 
changes throughout the trial. A fast RCT, in which 
vaccinated person-time accumulates at the same rate as 
the SWCT, has even greater power than a normal RCT. 
For RCT designs, prioritisation of high-risk clusters for 
vaccination increases power; risk-prioritised RCT and 
fast RCT designs achieve similarly high power, which is 
substantially higher than that of either random-order 
design. With the assumption of a trial start date of 
Feb 18, 2015, and duration of 6 months, we estimate the 
power to detect a 90% eff ective vaccine to be between 
49% and 89% for a risk-prioritised RCT, and between 6% 
and 26% for a SWCT, depending on the proportion of 
incidence that occurs within the trial population. Under 
the assumption that 5% of district-level cases occur in 
the trial population, we estimate that a 1-month delay in 
trial start date will reduce the power of RCT designs 
from 75% to 62% and of SWCT designs from 13% to 8% 
(fi gure 6). Under this same assumption, assessment of a 
vaccine with a 5-day versus 21-day protective delay would 
increase the power of RCT and SWCT designs from 75% 
to 81% and from 13% to 22%, respectively (appendix p 19).

Discussion
The spatiotemporal variation of infection risk in Sierra 
Leone’s Ebola virus disease epidemic has a major eff ect 
on both the validity and power of vaccine trial designs. 
Cluster-level variation in the incidence of Ebola trends 
increases false-positive rates when standard statistical 
methods are applied to SWCTs. Infl ation above the 
prespecifi ed target false-positive rate suggests that study 
results are less conservative than intended, although we 
show that a permutation test can remedy this issue. 
Nevertheless, in such spatiotemporally variable settings, 

the power of an SWCT to detect an eff ective vaccine is 
three-to-ten-times lower than that of a risk-prioritised 
RCT in the same trial population, given identical 
logistical constraints.

Although an SWCT, by design, must vaccinate clusters 
in random order, an RCT can vaccinate clusters in order of 
the highest to lowest risk, thereby providing the most 
information about vaccine effi  cacy. In fact, prioritisation 
of high-risk clusters increased power far more than did 
rolling out vaccines at double the speed in a fast RCT. 
Thus, a risk-prioritised RCT might still have suffi  cient 
power to defi nitively identify an eff ective vaccine, although 
power will continue to decrease rapidly if incidence 
declines continue at present rates. The imminent CDC-
led phased-rollout design is very similar to the risk-
prioritised RCTs simulated here and will include several 
geographically distinct clusters of front-line caregivers in 
regions of ongoing Ebola virus transmission.2 Individuals 
within clusters will be randomly assigned to receive 
immediate vaccination or delayed vaccination after 
6 months (without placebo), with vaccine rolled out to 
clusters sequentially at the fastest logistically feasible 
speed. The design allows fl exible addition of clusters to 
improve power and vaccine distribution as transmission 
patterns shift—an approach that would not be possible in 
an SWCT, which needs random a-priori specifi cation of 
the vaccination rollout sequence.

Despite the statistical advantages of an RCT, the SWCT 
might remain preferable in some scenarios. In weighing 
up practical and ethical considerations at the height of the 
Ebola epidemic, policy makers proposed an SWCT for 
Sierra Leone in response to the concern that an RCT 
would withhold potentially lifesaving interventions from 
the control group (and would therefore lack equipoise). 
The ethical linchpin of the SWCT is that it delivers 
vaccines as quickly as possible to maximise public health 
benefi ts, while monitoring vaccine effi  cacy as a non-
competing secondary objective. Any delays or 
modifi cations to vaccine deployment for the sake of 
improving statistical power would undermine its ethical 
foundation. We argue that the ongoing decline and spatial 
variation in risk in Sierra Leone presents not only 
statistical hurdles but also an ethical challenge for the 
SWCT design. If the goal is to maximise the public health 
eff ect, then clusters or individuals should be prioritised 
according to their risk of infection, which is not allowed 
in an SWCT. This approach would not, however, pose a 
problem in scenarios where infection risk is homogeneous 
or unpredictable across clusters. We conclude that the 
RCT is the more promising design for Sierra Leone, in 
view of its greater statistical power than the SWCT and 
the absence of ethical advantage for the SWCT.

However, permissibility of an RCT relies on its own 
equipoise considerations. We note that RCT equipoise is 
a function of anticipated protective or adverse eff ects of 
vaccination, combined with infection risk, which 
modulates their relative importance.19 For example, 

Figure 6: Statistical power by trial design and start date
Estimated power by trial start date, under the assumption that, in the absence of 
vaccination, 5% of district-level cases occur in the trial, the candidate vaccine is 
90% eff ective, and the vaccine protective delay is 21 days. The shaded area 
highlights the eff ect of a 1-month delay in the trial start date. 
SWCT=stepped-wedge cluster trial. RCT=randomised controlled trial.
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equipoise is more achievable in low-risk settings because 
the potential risks and benefi ts of vaccination are more 
balanced than in high-risk settings. Thus, in view of the 
substantial declines in Ebola virus disease incidence in 
Sierra Leone, the imminent phased-rollout RCT might 
now be ethically viable. Finally, we reiterate our claim19 
that, for fatal diseases like Ebola virus disease, equipoise 
is easier to achieve when other life-saving resources are 
dedicated to caring for trial participants who become 
infected.

Our power estimates are based on epidemic projections 
from a simple model that assumes that the incidence of 
Ebola virus disease is falling exponentially in all regions, 
albeit at diff erent rates. These projections should not be 
taken out of context, since they merely extrapolate recent 
trends, which might change. We did not aim to forecast 
incidence accurately; rather, we aimed to assess vaccine 
trial power and validity in the context of realistic 
spatiotemporal variation. An increase in Ebola virus 
disease incidence would increase the power of any trial, 
whereas a sudden end to the epidemic would decrease 
the power. Our straightforward model captures realistic 
variation in infection risk at both the individual and 
cluster level, but does not consider underlying stochastic 
dynamics in the transmission process, movement of 
Ebola virus disease cases between districts, or the indirect 
benefi ts of vaccination within a cluster.

The most important determinant of power is the 
expected number of cases that would occur in the trial 
population (in the absence of vaccination), which is 
established both by the trial population size and by the 
infection risk experienced by individuals in the trial. We 
have considered a single trial population size, and we 
have done a sensitivity analysis in which the hazard of 
infection varies. In our analysis, the risk of infection in 
trial participants was established by both district-level 
incidence projections and the proportion of cases 
assumed to occur within the trial population. To account 
for variation in the former, we implemented stochastic 
projections and assumed random distribution of trial 
clusters across districts. For variation in the proportion of 
cases assumed to occur in the trial population, we 
considered a range of values, based on the proportion of 
total cases occurring within health-care worker 
populations so far.

Several other important design considerations exist 
that are not included in our models. For example, RCT—
but not SWCT—designs can use placebo or comparator 
vaccines to avoid bias induced by behavioural changes in 
participants when they become aware of their vaccination 
status. However, an SWCT could be more acceptable for 
high-risk communities, in which vaccination of only half 
of trial participants might be unacceptable. The greater 
power of an RCT over an SWCT could also increase the 
speed with which a vaccine is defi nitively identifi ed as 
eff ective and subsequently rolled out to the wider 
population.

Crossover cluster-randomised designs (ie, those in 
which each cluster is observed both pre-intervention 
and post-intervention), such as the SWCT, are based on 
the ability to make comparisons between clusters that 
control for underlying time trends. We show that, when 
trends diff er between clusters, the statistical validity of 
this approach is at least partly compromised because of 
confounding between the timing of intervention and 
time-dependent changes in risk to clusters. In particular, 
classical regression approaches, including Cox pro-
portional hazards or generalised linear mixed models, 
that ignore this time dependency within clusters have 
infl ated false-positive rates. This problem might be 
more common than has previously been recognised, 
especially during acute infectious disease epidemics or 
outbreaks, in which risk is highly variable in space and 
time.20,21 For example, this issue could be a concern for 
the ring vaccination trial planned in Guinea, which is 
another trial with a crossover cluster-randomised 
design. In addition to permutation tests, other non-
parametric approaches have also been suggested 
to handle complex, and potentially unknown, 
spatiotemporal dependencies in risk.22

Our fi ndings show the usefulness of simulation 
approaches to assess trial designs and analyses under 
realistic and variable scenarios. Classical power analyses 
rely on analytical calculations that make strong 
assumptions, such as the absence of spatiotemporal 
dependency in infection risk. Analysis of estimates from 
simulated data, in which the underlying true parameters 
are known, provides a powerful device with which to 
discover biases and assess the robustness of estimators 
when not all assumptions are met. Here, we have 
leveraged modern computational approaches to identify 
problems with conventional methods and new analytical 
approaches that can be used to resolve them.

In conclusion, because of the observed temporal and 
geographical variation in infection risk, an SWCT 
design to assess candidate Ebola vaccines in Sierra 
Leone would have little power to detect effi  cacy and 
might not retain anticipated ethical advantages over 
other trial designs. By contrast, an RCT might have 
suffi  cient power to detect effi  cacy but needs to be 
started soon to avoid substantial reductions in power as 
the epidemic declines. Adaption of the basic RCT 
design to prioritise high-risk clusters substantially 
increases statistical power and ensures rapid 
distribution of a potentially eff ective vaccine to the 
groups that would benefi t most.
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