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Conclusion: HIV-1 acute infectivity has been
substantially overestimated
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Treatment as Prevention (TasP)

Treated HIV-infected individuals
transmit 96% less than
untreated HIV-infected individuals

Cohen et al. (2011). NEJM.



Treatment as Prevention (TasP)

—  No intervention
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adapted from Granich et al. (2009). Lancet.



Treatment as Prevention (TasP)

—  No intervention

—— Treatment based on symptoms

HIV incidence °°'°

year

adapted from Granich et al. (2009). Lancet.



Universal Testing and Treatment

—— No intervention
—— Treatment based on symptoms
—— Annual testing and immediate treatment

HIV incidence °°'°

year

“Test and Treat”

2000 2020

adapted from Granich et al. (2009). Lancet.

cluster randomized controlled trials underway



Will “Test and Treat” work?

Logistics

Uptake and adherence
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HIV Treatment as Prevention: Debate and

Commentary—Will Early Infection Compromise

Ea rly Transm iSSiOn Treatment-as-Prevention Strategies?

Myron S. Cohen"?3", Christopher Dye*', Christophe Fraser®'", William C. Miller>*",
Kimberly A. Powers®3'", Brian G. Williams®""

How much transmission happens before
diagnosis and treatment?
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What proportion of transmission occurs early?

biological
infectivity

X

sexual contacts
with susceptible
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rate of
new infections
generated

acute phase

chronic phase

/ ‘__—__——-—-_—____

serial monogamy,/

time since infection

Eaton et al. 2011.
AIDS & Behavior.

Alam et al. 2013.
Epidemics.
Romero-Severson et al.
2013. Epidemiolgy.

Henry & Koopman.
2015. Sci Reports.
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What proportion of transmission occurs early?
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Estimates of AF__, :

early*
proportion of transmission

< 1 yr post-infection

Pinkerton and Abramson,

1996 .
Kretzschmar and Dietz,

1998
Powers et al.,
2010

Jacquez et al.,

Hayes and Salomon and 1994 Koopman et al.,

White, Hogan, V \ 1997
- Y

2006 2008 Xiridou et al.,

\l/ B l2/()04

Pinkerton,
2007

\l, Prabhu et al.,
2009

and Longini,

etal.,
2008 2008

Sub-Saharan Africa u.s.
(heterosexuals) (heterosexuals or MSM)

Population

Cohen et al. (2011). NEJM.
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What proportion of transmission occurs early?

acute phase

biological
infectivity
chronic phase

time since infection

Here, we focus only on biological infectivity.
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What affects biological infectivity?

acute phase
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biological
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Maybe
recently transmitted virus
is more infectious?

Evidence from macaque-SIV
Ma et al. (2009). Virology.



What affects biological infectivity?

acute phase
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What affects biological infectivity?

acute phase

(V"a' 'Oad) LL

X

acute phase

biological

infectivity

chronic phase

time since infection

per virion
infectivity J |~ constant

time since infection

Assume constant strain infectivity
for now.



Infectivity-Viral Load Relationship

2.5X infectivity / log10 viral load

hazard
(per 100 person-years)

0.01

0.01

Donnell 2010: CD4 200-349/ml
® Donnell 2010: CD4>350/ml

® Attia 2009 viral load
@® Lingappa 2010 (HIV RNA copies/ml)
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Let’s take the average viral load trajectory

Viral Load

(log10 cp/ml)

20 40 60 80

days post-infection

Robb (2012). AIDS Vaccine 2012. PL02.02.



Let’s take the average viral load trajectory
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Determining a biological infectivity profile
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Determining a biological infectivity profile
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EHM

acute

compare to 120 hazard-months during 10 years of infection
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Estimating EHM Indirectly

acute

—_

excess hazard-months
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e Viral load trajectories

relative hazard

(versus chronic phase)

50 100
days since first RNA positive

e Fast epidemic growth Lilongwe, Malawi
explainable by

e early transmission

w
(O]
c

Q
@©
>
3
[ -

a

=

T

0 1965 1970 1975 1980 1985 1990 1
Year

Powers et al. (2011). Lancet.



Estimates

Variation in EHM
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Variation in EHM Estimates

acute

(1) Jacquez et al. 1994

(2) Pinkerton and Abramson 1996
(3) Koopman et al. 1997
(4)

Kretzschmar & Dietz 1998
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Variation in EHM__ ., Estimates

1) Jacquez et al. 1994

2) Pinkerton and Abramson 1996
3) Koopman et al. 1997
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5) Xiridou et al. 2004
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® (11) Prabhu et al. 2009

(13) Cohen et al. 2013 (Williams)
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Variation in EHM__ ., Estimates

Directly measured once by the
Rakai Community Cohort Study, Uganda
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Variation in EHM Estimates

acute

Directly measured once by the
Rakai Community Cohort Study, Uganda

(1) Jacquez et al. 1994

(2) Pinkerton and Abramson 1996
(3) Koopman et al. 1997
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(8)

(9)

(10
(11

Hayes et al. 2006
Hollingsworth et al. 2008
Abu-Raddad et al. 2008
) Salomon & Hogan 2008
) Prabhu et al. 2009

Most commonly cited estimates
EHM =35and 71

(13) Cohen et al. 2013 (Williams)
(14) Romero-Severson et al. 2013
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Why reevaluate EHM estimates?
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e Rakai Retrospective Cohort Study

Biases due to (1) unmodeled heterogeneity
(2) study design
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Determining a biological infectivity profile

continuous trajectory to
avoid overestimation
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Determining a biological infectivity profile
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Variation in EHM Estimates

acute
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Direct Measurement of Acute Infectivity

e |dentify recently infected individuals
e Observe rate at which they infect sexual partners
e Must be switching between partners

e Moral imperative to intervene

Very challenging and only done once!



The Rakai Retrospective Cohort Study

In a prospective population cohort study 1994-1999

retrospectively identified

235 stable couples observed serodiscordant at least once
Do individuals infect their partners at

different rates
early vs. later in infection?

Wawer et al. (2005). Journal of Infectious Disease.



The Rakai Retrospective Cohort Study
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The Rakai Retrospective Cohort Study
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The Rakai Retrospective Cohort Study
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The Rakai Retrospective Cohort Study
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The Rakai Retrospective Cohort Study

seronegative partner
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The Rakai Retrospective Cohort Study

Concluded acute infectivity >>> expected based on viral load



Heterogeneity in Transmission Rates

e Host genetics (e.g. CCR5)

e Circumcision

e Viral load of infected partner

e Viral genotype of infected partner
e Coital Rate

e Intercourse type (anal, dry, vaginal)
e Condom usage

e STls

e Coinfections

e Nutrition



Bias 1: Unmodeled Heterogeneity
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Bias 1: Unmodeled Heterogeneity
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Bias 2: Inclusion Criteria
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LOW acute
infectivity

Bias 2: Inclusion Criteria
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Bias 2: Inclusion Criteria

seronegative partner
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Simulating Rakai Transmission & Observation

nd

1. Simulate transmission in couples cohort

2. Replicate Rakai study design

months of follow-up

3. Apply published analyses
to simulated data.

\ 4




Couple Transmission Model

couple
& formation

sexual debut

?

sexual debut

—>

example relationship history

Bellan et al. (2013). Lancet.



Couple Transmission Model

extramarital

transmisson

marital
transmisson

Bellan et al. (2013). Lancet.



Couple Transmission Model

extramarital

transmisson

marital
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stage-dependent transmission




Couple Transmission Model
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Simulating Rakai Transmission & Observation

(
Ohazard \

Inputs - e
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months of follow-up

3. Apply published analyses
to simulated data.

\ 4




Simulating Rakai Transmission & Observation

Bias Analysis

Estimates = Input Parameters ?

If not, what drives bias?

Estimation with ABC-SMC
What inputs generate data like the actual Rakai data?




Bias Analysis

Adjusted Poisson Regression Unadjusted Survival Model
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Variation in EHM

acute

Most commonly cited estimates
EHM =35and 71
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Variation in EHM Estimates
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Conclusions

e Acute infectivity not significantly greater than expected by
viral load-infectivity relationship

e Both EHM

X

4 -

cute €STIMates <<< previous estimates

e Role of early transmission likely overestimated
e Acute HIV less likely to undermine TasP

Simulation of study design & observation to identify biases
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e Simulation of transmission and study design/analysis

* Arose from GA Tech Modeling Conference in Jan 2015
* In collaboration with CDC (Lopman, Gambhir, Vaccine Team)
e Ethical & statistical merits of Stepped Wedge vs RCT

 EVD incidence declining & spatiotemporally variable
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