

Silent, Immunizing Ebola Infections

SE Bellan, JRC Pulliam, C Pearson, D Champredon, S Cinkovich, S Fox, J Dushoff, LA Meyers

Steve Bellan, PhD, MPH, University of Texas at Austin October 24, 2014

Fatu Kekula, Student Nurse

- Impressive makeshift PPE.
- Potentially aided by asymptomatic immunity?

Evidence for Asymptomatic Infections Gabon Ebola Outbreak, 1996

- Followed direct contacts of infectious cases
- 24 identified who did not experience any symptoms
- 11/24 developed immune responses
- Not infectious

Leroy et al. 2000. The Lancet.

11 of 24 (46%) of asymptomatic contacts were infected

Does not directly give symptomatic proportion.

Example

• 1 cases infects 4 people, 2 symptomatic

- 11 of 24 (46%) of asymptomatic contacts were infected
- Does not directly give symptomatic proportion.

Example

- 1 cases infects 4 people, 2 symptomatic
- What's the symptomatic proportion?

- 11 of 24 (46%) of asymptomatic contacts were infected
- Does not directly give symptomatic proportion.

Example

- 1 cases infects 4 people, 2 symptomatic
- What's the symptomatic proportion?2/4 = 50%
- What's the proportion of asymptomatic contacts that were infected?

- 11 of 24 (46%) of asymptomatic contacts were infected
- Does not directly give symptomatic proportion.

Example

- 1 cases infects 4 people, 2 symptomatic
- What's the symptomatic proportion?
 want this 2/4 = 50%

we estimate 20-60% based on available data

• What's the proportion of asymptomatic contacts that were infected?

have this
$$2/8 = 25\%$$

estimated at 46% in Leroy et al. 2000

Asymptomatic Infection: The Rule, Not the Exception

Cholera

Influenza

Potentially more important for Ebola because of high HCW risk.

Polio

Pertussis

Etc...

Motivations for Understanding Silent Immunizing infections

Projections

Given $R_0 = 2$

After 1 generation interval (15 days)

After 2 generation intervals (30 days)

After 3 generation intervals (45 days)

Contacts on survivors are "wasted"

Eventually causes epidemic decline.

Not many survivors for highly fatal diseases.

Given R_0 = 2 and 50% asymptomatic

15 days

30 days

45 days

Contacts are "wasted" on immune individuals early in epidemic.

Immunity accumulates in small clusters with lots of risk (HCW & families).

Most immune individuals not survivors.

Model Diagrams

Effect of Silent Immunity on Vaccination

Effect of Silent Immunity on Vaccination

Motivations for Understanding Silent Immunizing infections

Projections

Sample size calculations for vaccine trials

Sample size calculations for vaccine trials

Pre-existing naturally acquired immunity reduces effective sample size of study.

Motivations for Understanding Silent Immunizing infections

Projections

Sample size calculations for vaccine trials

Leverage immune individuals in outbreak control

Leverage Immune Individuals in Outbreak Control

Identify immune individuals (survivors and asymptomatics), allocate them to front-line roles.

Similar to ring vaccination.

Two Critical Questions

Are asymptomatically infected individuals immune?

Can we reliably identify them?

Must answer both of these before we can move forward on interventions.

Actionable Item 1: Domestic Studies

Collect blood from contacts of Ebola cases in the US

Duncan's family, Dallas nurses, NYC case

- Serology, PCR, other immunological assays
- Calculate the asymptomatic proportion

Duncan had > 70 contacts. If just two of them test positive, symptomatic proportion = 50%.

Can be done immediately, BSL-4 lab (RMNL) ready to do assays given samples.

Actionable Item 2: Animal Model Studies

 No NHP model for asymptomatic infection

- Collect blood from
 - EVD survivors
 - asymptomatically infected indiv.

 Give plasma or fractionated antibodies to NHPs, then challenge them

Actionable Item 3: Vaccine Efficacy Trials

- Baseline serum can help estimate asymptomatic proportion.
- Difference in Ebola risk in

in control arm indicates protective immunity.

Any study of front-line workers -> use serology to learn more.

MUST balance with risk of blood draws, resource scarcity

Acknowledgements

- V Munster, J Prescott, AP Galvani, L Skrip, A King
- NIGMS MIDAS grant U01GM087719 to LA Meyers and AP Galvani
- RAPIDD support to JRC Pulliam
- NIH R25GM102149 to JRC Pulliam and A Welte
- Canadian Institute of Health Research (CIHR)
- Natural Sciences and Engineering Research Council of Canada (NSERC)

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at

http://creativecommons.org/licenses/by-nc/3.0/

© 2014 Steve Bellan

Title: Silent, Immunizing Ebola Infections

Attribution:

Bellan SE, Pulliam JRC, Dushoff J, Meyers LA (2014) Ebola control: effect of asymptomatic infection and acquired immunity. *The Lancet* doi: 10.1016/S0140-6736(14)61839-0.

Code: http://ebola.ici3d.org/

For further information please contact Steve Bellan (steve.bellan@gmail.com).