Methods to Study and Control Diseases in Wild Populations

Steve Bellan, MPH
Department of Environmental Sci, Pol & Mgmt
University of California at Berkeley
USA

ASI on Conservation Biology Witswatersrand Rural Facility Hoedspruit, South Africa 29 July, 2010

with thanks to Jonathan Dushoff for sharing some content

Outline

Surveillance

Investigation of Pathogen Natural History

Interventions

Modeling

Surveillance

- Definition of surveillance
 The ongoing systematic collection and analysis of data and the provision of information which leads to action being taken to prevent and control a disease, usually one of an infectious nature.
- Requires diagnostic tools & case definitions
- Active vs passive
- Role of surveillance: What use is it?
- What kind of data can you collect on wildlife & plant diseases?

Recall: Epidemiological Jargon

Incidence: # of new infections per unit time

Prevalence: % of population infected at particular time

 Seroprevalence: % of population carrying antibodies indicative of past exposure

Surveillance: Incidence

- # of new events * host⁻¹ * time⁻¹
- Events can be infection, onset of symptoms, death
- For what diseases is this measureable?
- You must be able to show that it is a <u>new infection!</u>
 - acute infections (rabies virus, anthrax, others?)
- How do you know it is infected?
 - diagnostics: laboratory & symptoms

Surveillance: Prevalence

- # proportion of hosts with a specified outcome
- Outcomes: Symptoms, Harboring a pathogen, Seropositivity
- For what diseases is this measureable?
- Prevalence ≈ Incidence * Duration
- So for diseases of short duration, prevalence may be undetectable.

Surveillance: Mortality

- Definition of surveillance
- Active vs passive
- Role of surveillance

- What kind of data can you collect on wildlife & plant diseases?
 - Incidence?
 - Prevalence?
 - Seroprevalence?
 - Mortality?
 - Pathogen Density?

Surveillance: Seroprevalence

Investigation of Pathogen Natural History

• What is causing the disease?

How is it transmitted?

Where, when, and in which animals/plants is it most problematic?

Why do we see these population level patterns?

What is causing the disease?

- Identification of the causal agent...Not easy!
- Veterinarians, Pathologists, Microbiologists
- Just because a pathogen is present does not mean it causes the disease!
- Koch's Postulates

Koch's Postulates

- (1) The microorganism must be found in abundance in all organisms suffering from the disease, but should not be found in healthy animals.*
- (2) The microorganism must be isolated from a diseased organism and grown in pure culture.
- (3) The cultured microorganism should cause disease when introduced into a healthy organism.
- (4) The microorganism must be reisolated from the inoculated, diseased experimental host and identified as being identical to the original specific causative agent.

How is it transmitted?

- Directly?
- STD?
- Water-borne?
- Vector-borne?
- Vertically?

Where/When is it transmitted?

- Temporal Patterns
 - Seasonality
 - Recruitment & recurrent epidemics: Rabies
- Spatial Patterns
 - Geographic patterns
 - Density gradients
 - Species Overlap & inter-species transmission

Which individuals are affected?

- Demography
 - Sex
 - Age
 - Diet
 - Behavior
- Population level patterns
 - Immunity from history of infection

Prevention & Interventions

- Treatment
- Vaccination
- Culling
- Vector Control
- Direct Pathogen Control
- Reserve Design

What are dynamic models for?

- Rigorously stating hypotheses
- Linking across scales
 - We measure disease parameters at the level of individuals
 - We are interested in results at the level of populations
 - Models are essential for linking these scales because they explicitly account for dependence of individuals (inherent in infection processes)
- Exploring the un-explorable
 - When ethical, logistical, or resource limitations prevent experimental or observational studies

Statistical Models

- Account for bias and random error to find correlations that may imply causality.
- Often the first step to assessing relationships.
- Assume independence of individuals (at some scale).

Dynamic Models

- Systems Approach:

 Explicitly model multiple
 mechanisms to understand
 their interactions.
- Links observed relationships at different scales.
- Explicitly focuses on dependence of individuals

By developing dynamic models in a probabilistic framework we can account for dependence, random error, and bias while linking patterns at multiple scales.

The SIR model & some extensions

- The basic SIR model
- Mass action vs frequency dependent transmission
- Adding an exposed class
- Realistic waiting time distributions
- Difference equations vs differential equations
- Heterogeneity
- Age structure

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at http://creativecommons.org/licenses/by-nc/3.0/

© 2010 Steve Bellan and the NSF/DIMACS Advanced Study Institute on Conservation Biology, 2010

Title: Disease Ecology Methods

Attribution: the NSF/DIMACS Advanced Study Institute on Conservation Biology, 2010

URL: http://www.cnr.berkeley.edu/getzlab/people/steve_bellan.html
For further information please contact Steve Bellan (sbellan@berkeley.edu).

